
Pointer Tainting Still Pointless
(but we all see the point of tainting)

Asia Slowinska
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

asia@few.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

herbertb@few.vu.nl

1. INTRODUCTION
A recent article by Michael Dalton, Hari Kannan, and Chris-

tos Kozyrakis in this journal (“Tainting is Not Pointless” [6]) crit-
icises the conclusions of our EuroSys’09 paper on pointer tainting
(“Pointless Tainting? Evaluating the Practicality of Pointer Taint-
ing” [16]). In a nutshell, our paper shows that pointer tainting has
serious problems. Dalton et al. criticise our critique.

In our opinion, the authors are excellent researchers with proven
track records in this field. No wonder that we read the article with
interest.

Our attitude is simple. Pointer tainting — assuming that it works
as advertised — is an extremely powerful technique to detect a va-
riety of attacks. Moreover, we would love to use it. In fact, it was
when we did use it that we discovered all sorts of issues which
made us abandon the project (and which eventually led to our pa-
per at EuroSys). So if anyone fixes the issues we encountered, we
would be the first to welcome it. It would mean that one of the most
powerful techniques to detect and analyse malware is not as broken
as we thought it was. Great.

So which is it - a crippled technique that can only be used in
limited cases, or the powerful detection and analysis technique that
most of us thought it was? Or phrased differently: did we change
our minds after reading the rebuttal?

The answer is no. We stand by our earlier conclusions. In this
article, we explain why. First, we show that the rebuttal paper se-
riously misrepresents the views expressed in our EuroSys paper.
Second, we address specific points and techniques advocated in the
rebuttal.

2. POINTLESS TAINTING: WHAT DID WE
(NOT) SAY?

Like Dalton, Kannan, and Kozyrakis, we define pointer tainting
as a specific form of Dynamic Information Flow Tracking (DIFT).
DIFT is a security technique that labels information with tags (such
as trusted/untrusted, or public/secret) and controls how such infor-
mation propogates through a system. As an example, suppose a
program copies a chunk of untrusted bytes from array A to array B.
In that case, the bytes in B should also be tagged untrusted. How-
ever, the exact rules of how to propagate the tags vary from system
to system [17]. For instance, some systems propagate tags on com-
putations like add and sub [12], while others do not [3]. Similarly,
we shall see that systems differ in how they handle tainted pointers
– and that the difference is crucial.

DIFT may best be described as a ‘hot old’ security technique. By
this we mean that the principles are ‘old’ – dating back to seminal
work by Dorothy and Peter Denning [7] in the 70s, but the area is
‘hot’ – witness a long string of publications in the last five years
in top tier venues (including SOSP, CCS, NDSS, ISCA, MICRO,

EUROSYS, ASPLOS, USENIX, Security & Privacy, and OSDI).
DIFT is used in programming languages, OS design, protection
against high level attacks (such as SQL injections and various web
attack) and many others.

Let us start by narrowing down the discussion: we are concerned
with the application of DIFT to unmodified binaries. In that case,
DIFT tracks the flow of information through a system by means
of taint tags. Here is an example. Suppose we tag every byte that
we receive from an untrusted source (say the network) as tainted.
And whenever that byte is copied or used as an input operand in
an operation (e.g., an addition), the result is also tainted. Since we
track the untrusted information as well as all values derived from
it, we can raise an alert if the data ends up in the wrong place. For
instance, in normal programs the program counter should never be
tainted.

Of course, rather than tainting untrusted data, we can also taint
trusted, privacy-sensitive data and track that such data does not leak
to untrusted parties. In either case, because information is tainted,
it is common to refer to the technique as ‘taint checking’, ‘taint
analysis’, or even simply ‘tainting’.

2.1 So, did we criticise DIFT?
The rebuttal claims that we do. Even the title, ‘Tainting is Not

Pointless’, suggests that we say it is, or might be. More explicitly,
Dalton, Kannan and Kozyrakis write that we state that ‘DIFT poli-
cies for buffer overflow prevention and malware analysis are rife
with false positives and negatives defects.’

It is important to be precise about the claims. Did we really crit-
icise tainting in general? Even without looking at our paper, this
seems implausible. Over the years we produced several taint anal-
ysis systems [12, 15, 18, 10, 11]. One of these, Argos, is used by
many either as a production honeypot, or as a research vehicle [13,
1]. By criticising taint analysis, we would attack much of the work
we have done in the past five years. Possible, but not likely.

No, we did not do this. Rather, the paper distinguishes between
specific variants of DIFT: basic tainting – which works fine, and
pointer tainting – which perhaps does not. Basic tainting is what
we described earlier: untrusted data is tagged as tainted and the tag
is propagated when the data is copied (either directly, or when it is
used as source operand in computations like add, sub, etc.).

Basic tainting targets attacks that change the control flow of a
program. A simple example is shown in Figure (1.a) which rep-
resents part of a server program. The server reads a request from
a socket in a request buffer. If the attacker provides more than 64
bytes, the read will overflow the request buffer and overwrite the
handler function pointer. When the victim program calls the
function in the next line, it really calls the attacker’s code instead.
Basic tainting detects such attacks by raising an alert (only) on
dereferences due to jumps, branches, function calls/returns, when

88

struct req { void serve (int fd)
char reqbuf[64]; {
void (*handler)(char *); char *name = globMyHost;

}; char cl_name[64];
char svr_reply[1024];

void do_req(int fd,
struct req *r) // now the overflow:

{ read(fd,cl_name,128);
// now the overflow: sprintf(svr_reply,
read(fd,r->reqbuf,128); "hello %s, I am %s",
r->handler (r->reqbuf); cl_name, name);

} svr_send(fd,svr_reply,1024);
}

(a) control data attack possible (b) non-control data attack possible

Figure 1: Two buffer overflow vulnerabilities. The program in (a) is
vulnerable, because if an attacker provides more than 64 bytes to the
read call, the program will overwrite the handler function pointer.
When the program subsequently calls the handler, it will really call an
address provided by the attacker. The program in (b) is also vulnerable,
because if attackers provide more than 64 bytes to the read call, they
can change the reply string sent by the server - potentially making it
leak sensitive information.

the target address is tainted. In this case, it would raise an alert
when the handler is called in the last line.

There is nothing wrong with basic tainting. In the paper, we went
so far as to write that basic tainting is one of the most reliable meth-
ods for detecting control flow diversions and was successfully ap-
plied in numerous systems. In summary, we never criticised DIFT
or tainting in general. It may be that this was not explicit enough in
our paper, but we felt that it might be sufficient to subtitle our pa-
per “Evaluating the practicality of pointer tainting’, to say that we
have no problem with basic tainting, and to state repeatedly, from
the abstract to the conclusions, that we talk solely about pointer
tainting.

2.2 The different uses of pointer tainting
(and did we conflate them?)

The main limitation of basic tainting is that it protects against
attacks that divert a program’s control flow, but not against attacks
that do not. Figure (1.b) shows an example. Here the overflow
allows the attacker to modify the name string and thus the server’s
reply, potentially causing it to leak information. No code injection,
no diversion of the control flow. Clearly, these attacks cannot be
detected by basic tainting.

In fact, besides pointer tainting we are not aware of any other
technique to detect such attacks reliably on unmodified binaries.
Pointer tainting, however, was created expressly for this purpose.
Actually, as Dalton, Kannan and Kozyrakis rightly point out, pointer
tainting has two very different use cases: stopping memory corrup-
tion attacks such as the one above and malware analysis. But since
we are on the topic of memory corruption now, let us start with that.

Pointer tainting for detecting memory corruption. Pointer
tainting is simply another form of DIFT that builds directly on basic
tainting. But it is much stronger. It applies all the taint propagation
rules of basic tainting, as well as one additional one. The new rule
concerns pointer dereferences, hence the name.

Let us try to make this new rule clear. Basic tainting does not
worry about tainted pointers at all other than that it propagates taint
as usual (e.g., when the pointer is copied). If a pointer p is tainted
on a basic tainting system, then a dereference like ‘*p = x’ will
not raise an alert. Nor will it propagate taint to *p.

Pointer tainting, on the other hand, does worry about tainted

dereferences. When used to detect memory corruption such as
the one in Figure (1.b), it will raise an alert whenever the program
dereferences a tainted pointer [2]. In the example, the name pointer
is tainted by the read and dereferenced by the sprintf.

Attack detected, problem solved? Not quite. Programs often
dereference tainted pointers in a legitimate way. Translating ASCII
to UNICODE is a good example. Suppose a server receives an
ASCII string from a user and converts it to UNICODE. To do so, it
looks up the string’s characters in a translation table, constructing
an address by adding an index derived from the character to the base
of the translation table. The resulting pointer is tainted. Clearly, the
dereference is perfectly legal and should not trigger an alert.

Pointer tainting is complex mainly because it must distinguish
between legitimate and illegitimate derefences of tainted pointers.
A significant part of our paper was devoted to techniques to avoid
false positives in the presence of table lookups. More about this
issue in Section 3.

Pointer tainting for malware analysis. The other use of
pointer tainting is in malware analysis. For instance, to detect
whether a program is a trojan keystroke logger, we could taint all
characters typed by the user and see whether tainted bytes appear in
the address space of the program. To do so, we should not raise an
alert when a tainted pointer is dereferenced. After all, a lookup of a
character in our conversion table will use a tainted pointer, but it is
not malicious. But we should not completely ignore the conversion
tables either. Sticking to the previous example, whenever a privacy
sensitive character (typed by the user) is translated to UNICODE,
the result is sensitive also. In other words, for this application do-
main, we should propagate the taint on pointer deferences.

Unfortunately, pointer tainting in this domain has fundamental
problems due to false positives. In our critique, we investigate the
problem in detail and show that it is fundamental. The root cause
is an undecidable case, where the processor cannot distinguish be-
tween two situations where in the one case taint should propagate
on a pointer dereference, and in the second case it should not.

We did not conflate the two use cases. In their rebuttal,
Dalton, Kannan and Kozyrakis state – repeatedly – that we conflate
DIFT policies for memory corruption with the entirely separate use
of DIFT for malware and virus analysis. We disagree. As we sum-
marised above, we distinguish clearly between the two application
domains and the different forms of pointer tainting. When pointer
tainting is applied to detect memory corruption, we refer to it as
LPT or limited pointer tainting (as the response to a dereference of
a tainted pointer is limited to raising an alert). In contrast, we talk
about FPT or full pointer tainting when the technique is used for
malware analysis, because in that case we go the whole hog: rather
than stopping and raising an alert, we propagate taint even more
aggressively.

The distinction is made throughout the paper in – literally – every
section. We devoted a subsection to each of the two variants to
explain in detail what they mean. After that, every analysis, every
mitigation technique and every conclusion comes with a label that
says whether it pertains to LPT, FPT, or both.

We find it hard to believe that anyone could have missed this.
Perhaps the point the authors wanted to make was different, but we
can only speculate what that point might be. Again, we stress that
we analysed both use cases in the same paper because they have
something in common. Something important: they both add to the
sound technique of pointer tainting a rule about what to do with
dereferences of tainted pointers.

89

2.3 So, what did we criticise?
We did not criticise DIFT. We did not criticise basic tainting.

We did criticise pointer tainting for detecting memory corruption
attacks, although we also said that depending on the architecture
and operating system pointer tainting one may get it to work. Par-
ticularly, we doubted that it could be done for x86 architectures
running Windows. Finally, we criticised pointer tainting for mal-
ware analysis, FPT, as fundamentally flawed – and yes, rife with
false positives and negatives.

More than half of our critique was devoted to FPT. Fortunately,
we need not discuss it further in this paper, as Dalton et al. agree
that our criticism here is correct. Even so, they mention only the
problem of implicit information flow, wheras we tried to show that
the problem goes deeper than that. The main problem is false pos-
itives, not false negatives1. Nevertheless, as we agree that pointer
tainting for malware analysis has serious problems, the remainder
of this paper will focus on the use of pointer tainting for detecting
memory corruption attacks.

3. WERE WE RIGHT TO CRITICISE LPT?
Pointer tainting for detecting memory corruption attacks (LPT)

is less cumbersome than using the technique for malware analysis
(FPT) and in our critique we even say that the implementation by
Dalton et al., is the most promising, most reliable, and most practi-
cal of such systems. So why criticise LPT at all? The reason is that
issues remain.

Containment techniques. We have seen that the aggressive-
ness of LPT should be contained in order to prevent false positives
on table lookups. There are different ways to do this and we men-
tion four of them in our paper:

1. ebp/esp protection,

2. detecting and sanitising table accesses,

3. bounds check recognition (BCR),

4. pointer injection detection (PI).

Strangely, Dalton, Kannan, and Kozyrakis talk about the first
three only (and agree that they do not work) and then present the
fourth one as their rebuttal. We want to emphasise that we also
discussed pointer injection in our paper! We devote almost a full
column of text to PI. We even said that things are mostly fine on
SPARC/Linux [5]. We also said that it will be a challenge to port it
to architectures like the x86 and operating systems like Windows.

Portability. To see where portability issues arise, let us briefly
look at pointer injection. The main idea is that we identify the
legitimate pointers in the system. If the program dereferences a
legitimate pointer, everything is fine. However, a dereference of
a pointer that is not a legitimate pointer is not okay. Typically, it
means that an attacker is trying to inject a pointer. Thus, at startup
time, PI marks all pointers to statically allocated memory as point-
ers. At runtime, it marks all return values of system calls that dy-
namically allocate memory as pointers. Finally, PI tracks the prop-
agation of pointers and also the propagation of untrusted (tainted)
data, and raises an alert whenever a dereference is made of a tainted
value that was not explicitly marked as pointer.

1However expensive, it may be possible to prevent these false neg-
atives by raising alerts as soon as taint appears in the process’ ad-
dress space – before the malware can launder it.

In principle, we like the idea. PI elegantly solves the problem
of table lookups. It requires two things. First, we should not miss
any pointers during the marking process, as this would lead to false
alarms. Second, we should try our best to mark only real pointers
as pointers, because erroneously marked values may lead to false
negatives.

A port of PI to Windows is hard, for instance because finding
pointers at startup time is complicated. In the case of Linux, the
authors use hardcoded constants in header files for a variety of
memory regions [5]. No such header files are available for Win-
dows. Of course, one may scan a binary and conservatively mark
values as pointers if they could be pointers, but getting it wrong
is not without consequences. In particular, they may lead to false
negatives.

As one cannot identify kernel heap regions, the authors suggest
to treat any value that points into kernel address space conserva-
tively as a pointer. This is also what we suggested in our paper.
Again, doing so increases the number of false negatives. Moreover,
we do not see how one could still protect kernel memory in such
a situation. The ability to protect kernel and userspace was one of
the selling points of Raksha [5].

A port to x86 is also hard, because scanning instructions to look
for pointer manipulations is harder on x86 than on SPARC. The
reasons are that static disassembly is undecidable and that pointer
manipulations are hard to distinguish from scalar handling. As we
mentioned above, overestimation leads to false negatives.

In general, though, PI is not easy to get right on any architecture.
This is not to say that it is impossible, but subtle issues arise. Let
us consider the rules for PI proposed by the authors of the rebuttal
in [5]. The authors painstakingly map out the rules for DIFT propa-
gation so as to avoid false positives. For instance, when two values
are added or subtracted and either of them is marked as pointer, the
result will also be a pointer. This looks like the right thing to do,
even though one might mistakenly classify a distance between two
pointers (a subtraction of two pointers) as a pointer itself. We do
not consider this very serious. In general, false negatives are less
important than false positives.

The point is that it is easy to make mistakes. Some are seri-
ous. For instance, the authors claim that other ALU operations like
multiply or shift should not be performed on pointers. So when-
ever they encounter such operations, the result is marked as ‘not
a pointer’. This makes sense in most cases, but not always. For
instance, here is a snippet of assembly of the wget download pro-
gram:

8069253: lea 0x24(%esp),%eax # %eax is a pointer
8069257: add $0xf,%eax
806925a: shr $0x4,%eax # shift right
806925d: shl $0x4,%eax # shift left

In this example, we see that some applications do perform shifts
on pointers – for alignment for instance. PI with the above rules
would mistakenly conclude that %eax is not a pointer, leading to
false positives. It is fairly easy to remedy the rules to make them
cope with this particular problem, but it would again increase the
number of false negatives. And it would be difficult to determine
when the rules are really foolproof.

To quantify the problem of possible false negatives, we imple-
mented a pointer tainting DIFT system exactly like Raksha [5], but
rather than using the Linux header files, we identify pointers by
value - as proposed by Dalton et al. The taint propagation rules
are the same as Raksha’s (with the sole exception that we fixed the
issue with the shift operation described above). We then measured
how many stack values were erroneously tagged as pointers. For
a binary like the wget download program, 14305 out of 215758

90

or 6.6% of all values tagged as pointers are not really pointers at
all - they just happen to point to valid memory areas. Moreover,
13.1% of all functions executed have at least one such a misclas-
sified value. In our opinion, such numbers are not negligible and
some of the ‘pointers’ may be used by attackers.

In summary, we like PI and still believe it is one of the most
promising techniques for containing taint propagation in pointer
tainting. However, as demonstrated above, it is not easy to get it
right. It is even harder to do so on an architecture like x86 and for
closed source operating systems like Windows. We do not say that
it is impossible. Also, if anyone can do it, it would be the group of
Dalton, Kannan and Kozarykis. And it would be great if they did
it. All we say is that it will not be easy.

Implicit information flow. According to Dorothy and Peter
Denning [7], an implicit flow of information from x to y occurs
whenever a statement specifies a flow from some arbitrary z to y,
but execution depends on the value of x. In general, all condi-
tional structures generate implicit flows. In our context, an im-
plicit flow means that even though there is no direct assignment of
a tainted value to a variable, the value of a variable is completely
determined by the tainted value [14]. Conditional statements such
as “if (x==0) y=1; else y=2;” are the best-known examples
of implicit information flow. Suppose x is tainted. As there is no
assignment of x to y, the latter variable will not be tainted, even
though it is completely determined by the value of x.

Dalton, Kannan and Kozyrakis acknowledge that implicit infor-
mation flow is a problem for DIFT, but only for malware analysis.
We already argued that the problems for malware analysis go much
deeper. Besides false negatives, we demonstrated an abundance of
false positives. In this section, however, we are concerned with
their rebuttal that implicit information flow is only a problem in
malware analysis: “No known memory corruption attacks in the
real world rely on implicit information flow”. They also say that
none of these criticisms apply to DIFT policies for memory cor-
ruption attacks. In their opinion, “policies for memory corruption
prevention need only track common flows of information such as
data movement”.

We disagree and present an example – from their own paper [4]
– of a realistic memory corruption attack that relies on implicit in-
formation flow to escape tainting. It does not involve a condition
in the form of an if statement, but there is no reason it should.
Instead, it uses a jump table that is indexed with a tainted value.
Moreover, it is a common attack in the sense that existing format
string errors are susceptible to it.

Again, we only aim to show that these issues do exist. They lead
to false negatives. But as we mentioned earlier, we consider false
negatives less important than false positives. And as in our EuroSys
paper, we believe that pointer tainting for memory corruption may
well be useful, as long as one accepts false negatives (and it remains
to be seen if/how it works on x86/Windows combinations).

We will start with a description of the attack. The printf fam-
ily of functions, if used carelessly, allows attackers to write an ar-
bitrary value to an attacker-specified address – this is known as a
format string attack. The problem stems from the use of the %n for-
mat specifier, which causes printf to write the number of bytes
printed to an address specfied as an argument (on the stack).

In a nutshell, a format string attack works as follows. A sloppy
programmer writes code that reads a string str of user input and
prints it for instance as follows: printf(str). If the input string
is a normal string, all is well. However, instead of a normal string,
an attacker may provide as input a format specification, such as
"hello%n". What happens is that printf() will interpret the

dest address

0

S1

S2

3S

S0

S1

S2

3S

points
"hello%n"to

interpreted as

points
to

(a) (b)

"%*x%n"

interpreted as

interpreted as
width argumentdest address

S

Figure 2: Stack layout during our format string attacks

format and display characters accordingly. In this case, it will print
hello and then store the value 5 (the number of characters dis-
played so far) in the memory location specified by the next argu-
ment of the printf(). In this example, we did not specify a
second argument, but printf() does not know that. It will sim-
ply interpret the 4 bytes above the format string on the stack as an
address and write the value 5 to that address.

The stack is sketched in Figure (2a). The address to the format
string provided by the attacker is the first argument to printf()
(at address s0). There is no real second argument, so printf()
will interpret the value at s1 as the second argument (the address
where it should store the number of printed characters).

Since the format string provided by attackers cannot have an ar-
bitrary length, attackers often use a constant field width specifier
which determines the minimum number of characters to be printed.
For instance, printf("%50x%n",x,&y) will print the value of
x, padded with spaces to 50 characters, and then assign the num-
ber of printed bytes (50) to y. Using the field width specifier, at-
tackers can write an arbitrary value to an arbitrary location, while
keeping the format string short. Unfortunately for the attacker, in
most DIFT systems the value will be tainted: it is calculated by the
printf() function by adding up the number of characters printed
and this calculation uses the field width specifier.

This is bad for attackers. However, there is another way. And
this time, the value is not tainted. Rather than providing the field
width directly, the printf() family permits us to specify the field
width as *, which means printf() will interpret the next argu-
ment on the stack as the (integer) field width. In other words, the
field width specifier is now read from the stack. To illustrate this,
Figure (2.b) shows the stack when the attacker provides the for-
mat string"%*x%n". Again, printf() will find a pointer to the
format string as its first parameter and look for the remaining argu-
ments on the stack. Thus, the value at s1 will be interpreted as a
field width specifier, and the value at s2 as the destination address.

It is not very difficult to pick a specific value on the stack to
use. For instance, by providing the format string "%x%*x%n", an
attacker forces the function to use the value at s2 as the field width
specifier and the value at s3 as the address. When carefully chosen,
the field width specifier will not be tainted. It turns out that in many
implementations one can specify directly which value on the stack
one wants to use, by using positional parameters. However, this is
beyond the scope of this paper. We refer interested readers to the
excellent paper by Dalton et al. [4]. The important message is that
these attacks are real. A classic example of an exploit that works
this way is LSD’s attack on the IRIX telnet daemon [8].

Also, we leave it as an exercise for the reader to construct more
sophisticated attacks that ‘set’ the address of the memory location
to modify, and then ‘set’ the value at that address. If attackers
are careful enough, they can write an arbitrary non-tainted value
at a location that is pointed to by a non-tainted value on the stack.
Even advanced detection techniques like PI would not detect such
attacks. The authors of Raksha therefore propose to handle such
functions separately. We agree that this is probably the only thing

91

we can do.
Again, in this section we are not concerned with detecting such

attacks. We merely want to show that they are real and that they are
examples of implicit information flow. We will now zoom in on the
implicit flow aspect.

Intuitively, we already see that this is an implicit flow of infor-
mation as an untainted value is completely dependent on a tainted
value. Let us look at the examples in a little more detail to see what
form of implicit information flow it is2. To process a format string,
the vfprintf() function iterates over the format string’s char-
acters, constantly jumping to appropriate code blocks by way of
the step0_jumps table. For instance, when it encounters the ‘*’
field width specifier, it will jump to the corresponding code. The
jump table is thus indexed using tainted characters. In essence, this
is a very efficient implementation of the following (pseudo-)code:

if (character == ’+’)
do_plus();

else if (character == ’%’)
do_percent();

.

.

.
else if (character == ’*’)

width = read_from_stack();
do_width_asterics ();

.

.

In this code, character is tainted, but since the taint is not
propagated through the control flow, the width value read from
the stack is untainted. Thus its usage is not tracked, and possible
attacks go undetected.

In general, implicit information flows are hard to track. They re-
quire analysis of both the taken and the non-taken paths in branches.
Even in higher-level managed languages like Java researchers have
failed to get it correct for all cases [9].

4. CONCLUSIONS
In this paper, we argued several things. First, that the rebuttal

by Dalton, Kannan, and Kozyrakis misrepresents our views and the
views expressed in our Eurosys’09 paper. This is quite unfortunate,
because casual readers may think that we carelessly dismissed an
important security technique. We did nothing of the sort. Second,
that some of the solutions in the rebuttal are expressly discussed
in our paper. Proposing them as a rebuttal suggests that we were
not aware of them, which is not the case. Third, that we agree that
pointer tainting for malware analysis is problematic, but that our
criticism goes beyond false negatives due to evasion by the mal-
ware, and expressly includes false positives also. Fourth, that im-
plicit information flow is problematic for detecting memory cor-
ruption also.

Thus, the disagreement that remains concerns the technique of
pointer injection. In our Eurosys’09 paper we argued that this is a
promising and reliable method (and one that may indeed be useful),
but that it would be difficult to port to the x86 architecture and
the Windows operating systems. Dalton, Kannan, and Kozyrakis
disagree and suggest solutions for some of the problems. Note that
we are talking about a minor part of both our original paper and
the rebuttal. In this paper, we argue again that it really is not easy
to get PI right, especially on x86/Windows combinations, although
we do not say that it is impossible! In light of the above, we stand
by our analysis.
2The analysis is based on libc-2.10.1.

5. REFERENCES
[1] J. Berg, E. Teran, and S. Stover. investigating argos. USENIX

;LOGIN:, pages 29–35, 2008.
[2] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer.

Defeating memory corruption attacks via pointer taintedness
detection. In DSN ’05, Washington, DC, USA, 2005. IEEE
Computer Society.

[3] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: end-to-end containment
of internet worms. In SOSP ’05, 2005.

[4] M. Dalton, H. Kannan, and C. Kozyrakis. Deconstructing
hardware architectures for security. In WDDD’06, June 2006.

[5] M. Dalton, H. Kannan, and C. Kozyrakis. Real-world buffer
overflow protection for userspace and kernelspace. In
Proceedings of the 17th Usenix Security Symposium, July
2008.

[6] M. Dalton, H. Kannan, and C. Kozyrakis. Tainting is not
pointless. SIGOPS Oper. Syst. Rev., 44(2):88–92, 2010.

[7] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Commun. ACM, 20(7):504–513,
1977.

[8] LSD. Irix telnet daemon exploit irx_telnetd.c and
explanations. http://www.securityfocus.com/
templates/archive.pike?list=1&mid=75864.

[9] S. Nair. "Remote Policy Enforcement Using Java Virtual
Machine". PhD thesis, Vrije Universiteit Amsterdam,
January 2010.

[10] G. Portokalidis and H. Bos. Eudaemon: involuntary and
on-demand emulation against zero-day exploits. In ACM
SIGOPS EUROSYS, 2008.

[11] G. Portokalidis, P. Homburg, N. Fitzroy-Dale,
K. Anagnostakis, and H. Bos. Protecting smart phones by
means of execution replication. Technical Report IR-CS-54,
Vrije Universiteit Amsterdam, September 2009.

[12] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks. In Proc. ACM
SIGOPS EUROSYS’2006, 2006.

[13] N. Provos and T. Holz. Virtual honeypots: from botnet
tracking to intrusion detection. Addison-Wesley
Professional, 2007.

[14] H. J. Saal and I. Gat. A hardware architecture for controlling
information flow. In ISCA ’78, pages 73–77, New York, NY,
USA, 1978. ACM.

[15] A. Slowinska and H. Bos. The age of data: Pinpointing
guilty bytes in polymorphic buffer overflows on heap or
stack. In ACSAC. IEEE Computer Society, December 2007.

[16] A. Slowinska and H. Bos. Pointless tainting?: evaluating the
practicality of pointer tainting. In EuroSys ’09: Proceedings
of the 4th ACM European conference on Computer systems,
2009.

[17] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking. In
ASPLOS. ACM, 2004.

[18] M. Valkering, A. Slowinska, and H. Bos. Tales from the
crypt: fingerprinting attacks on encrypted channels by way
of retainting. In Proc. of 3rd European Conference on
Computer Network Defense (EC2ND), October 2007.

92

