
The Age of Data: pinpointing guilty bytes in polymorphic buffer

overflows on heap or stack

Asia Slowinska, Herbert Bos

Vrije Universiteit Amsterdam

Department of Computer Science, Faculteit der Exacte Wetenschappen

De Boelelaan 1081, 1081 HV Amsterdam, Netherlands

{asia,herbertb}@few.vu.nl

Abstract

Heap and stack buffer overflows are still among the

most common attack vectors in intrusion attempts. In

this paper, we ask a simple question that is surpris-

ingly difficult to answer: which bytes contributed to the

overflow? By careful observation of all scenarios that

may occur in overflows, we identified the information

that needs to be tracked to pinpoint the offending bytes.

There are many reasons why this is a hard problem.

For instance, by the time an overflow is detected some

of the bytes may already have been overwritten, creat-

ing gaps. Additionally, it is hard to tell the offending

bytes apart from unrelated network data. In our solu-

tion, we tag data from the network with an age stamp

whenever it is written to a buffer. Doing so allows us

to distinguish between different bytes and ignore gaps,

and provide precise analysis of the offending bytes. By

tracing these bytes to protocol fields, we obtain accurate

signatures that cater to polymorphic attacks.

Keywords: attack analysis, intrusion detection and

prevention, honeypots

1 Introduction

Polymorphic network attacks are difficult to detect
and even harder to fingerprint and stop. This is espe-
cially true if the exploit itself is polymorphic [11]. We
define fingerprinting as the process of finding out how
an attack works. It is important for two reasons: anal-
ysis of the attack (e.g., by human security experts),
and signature generation.

Signature generation is hard because of the complex
and conflicting list of constraints. Signatures should in-
cur a negligible ratio of false positives, while the num-

ber of false negatives should be low. Also, we should
be able to check signatures at high rates and cater to
polymorphic attacks with polymorphic exploits. We
further aim for fast, one-shot generation without the
need to replay the attack.

In this paper, we address the problem of polymor-
phic buffer overflow attacks on heap and stack. Given
their long history and the wealth of counter-measures,
it is perhaps surprising that buffer overflows are still
the most popular attack vector. For instance, more
than one third of all vulnerabilities notes reported by
US-CERT in 2006 consisted of buffer overflows [31].
As the US-CERT’s database contains many types of
vulnerabilities (leading to denial of service, privacy vi-
olation, malfunctioning, etc.), the percentage of buffer
overflows in the set of vulnerabilities leading to control

over the victim is likely to be higher. Even Windows
Vista, a new OS with overflow protection built into the
core of the system, has shown to be vulnerable to such
attacks [25].

Polymorphic attacks demand that signature gen-
erators take into account properties other than sim-
ple byte patterns. For instance, previous approaches
have examined such properties as the structure of exe-
cutable data [14], or anomalies in process/network be-
havior [9, 15, 17].

In contrast, in this work we asked a simple ques-
tion that is surprisingly hard to answer: what bytes
contribute to an attack? As we will see, an answer
to this question also trivially yields reliable signatures.
Like [4], we focus on vulnerabilities rather than spe-
cific attacks, which makes the signatures impervious
to polymorphism. However, besides signatures, we be-
lieve the answer to the above question is invaluable for
later analysis by human experts.

The full system is known as Prospector , a protocol-
specific detector of polymorphic buffer overflows. It

1

deals with both heap and stack overflows in either the
kernel or user processes and while it was implemented
and evaluated on Linux, the techniques apply to other
OSs also.

In a nutshell, the idea is as follows (see also Fig-
ure 1). We use an emulator-based honeypot with dy-
namic taint analysis [24] to detect attacks and to locate
both the exact address where a control flow diversion
occurs and all the memory blocks that originate in the
network (known as the tainted bytes). The emulator
marks all bytes originating in the network as tainted,
and whenever the bytes are copied to memory or reg-
isters, the new location is tainted also. We trigger an
alert whenever the use of such data violates security
policies.

Next, we track which of the tainted bytes took part
in the attack. For instance, in a stack overflow we walk
up the stack looking for tainted bytes. However, we
must weed out all the memory that, while tainted, had
nothing to do with the attack (e.g., stale data that was
part of an old stack frame, such as the bytes marked
x in the figure). To do so, we track the age of data at
runtime, so that we know whether memory on the heap
or stack is a left-over from an older allocation and can
distinguish relevant bytes from memory to be ignored.

Once we know which bytes were in the buffer over-
flow and we can trace them to the bytes that arrived
from the network, we find out which protocol fields con-
tributed to the attack. If n fields were involved in the
overflow with a combined length of N , we know that
any similar protocol message with a combined length
for these fields greater or equal to N will also lead to
a buffer overflow.

Contributions. Our main contribution is the iden-
tification of all bytes contributing to an overflow. The
identification is performed in a single interaction (i.e.,
without need for replaying attacks) and is sufficiently
fast to be used in honeypots. The signature generator
is intended to demonstrate the usefulness of such data
in practice. While the end result is a powerful signa-
ture generator in its own right, very different signature
generators could also be built on this technique. For
instance, we essentially yield snort-like patterns which
may be used if the attack is not polymorphic. In ad-
dition, it could generate a wealth of information for
human security experts.

A second contribution is that we extend taint anal-
ysis in the temporal domain. In its simplest form, taint
analysis is zero-dimensional and consists of a single bit
for every data item to indicate whether or not it origi-
nates in a suspect source. More advanced analysis ex-
tends the analysis in the spatial dimension, by tracking
exactly where the data originated (e.g., Vigilante and

Argos both maintain a pointer in the network trace).
In this paper, we extend tracking in the temporal do-
main by storing when data is tainted. We argue that
this is essential information for signature generators
that allows us to separate relevant bytes from unre-
lated tainted memory.

A third contribution is that we first show that well-
known existing vulnerability-based signatures based on
the length of a protocol-field (e.g., Covers [16]) are
weak and frequently incur both false positives and false
negatives, and then remedy the weakness so as to make
false positives virtually impossible and false negatives
implausible.

A fourth contribution is that we extend the vulner-
ability signatures to include attacks based on protocol
messages that contain a specially forged (wrong) length
field. For instance, such fields specify the length of an-
other protocol field and by providing a wrong value,
the attack coerces vulnerable programs into allocat-
ing buffers that are too small and that overflow when
the actual data exceeds the specified length. We will
discuss more advanced attacks of this type also. Few
existing projects address such attacks.

Finally, we extended Prospector with an attack
vector-specific module to make it deal with double free
attacks.

Outline. Section 2 discusses related work. Sec-
tion 3 highlights factors in heap and stack overflows
that complicate the analysis. Sections 4 and 5 describe
the design and implementation of Prospector , respec-
tively. Prospector is evaluated in Section 6. Conclu-
sions are drawn in Section 7.

2 Related work

Previous work on detection of polymorphic attacks
focused on techniques that look for executable code in
messages, including: (a) abstract or actual execution of
network data in an attempt to determine the maximum
executable length of the payload [30], (b) static analysis
to detect exploit code [5], (c) sled detection [1], and
(d) structural analysis of binaries to find similarities
between worm instances [14].

Taint-analysis is used in several projects for signa-
ture generation [21, 7]. However, none of these projects
provide an answer to the question of which bytes were
involved. Enhanced tainting [3] expands the scope of
tainting to also detect such attacks as SQL injection
and XSS, but requires source code transformation.

Transport-layer filters independent of exploit code
are proposed in Shield [32] with signatures in the
form of partial state machines modeling the vulnerabil-
ity. Specific protection against instruction and register

2

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

and determine which protocol fields were
Correlate memory with network trace

involved in the attack. Finally, determine
the maximum combined length for these
fields.

1 2 3 4

contributed to the attack and whether
Detect which tainted blocks

a gap should really be ignored.

b2

x

G

buffer
vulnerable

b1 b2

Detect attack using taint analysis
and locate the target and the tainted
blocks. In the emulator we also track
the origin of the data in the network
trace and keep an administration to
distinguish between different memory
allocations.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

ov
er

fl
ow

data from 2 locations in the network
trace (b1 and b2) and overflows a
target address. The area marked by ’x’
is also tainted, but has nothing to do
with the overflow. Furthermore, part of

attack, contains a gap (indicated by ’G’).
the tainted area b2 that is part of the

A vulnerable buffer is filled with

b1

targettarget target

Figure 1. Main steps in Prospector ’s attack analysis.

shuffling, as well as against garbage insertion is offered
by semantics-aware detection [6].

A related project, PolyGraph [20], fingerprints at-
tacks by looking at invariant substrings present in dif-
ferent instances of suspicious traffic. The idea is to use
these substrings as a signature. Such methods are vul-
nerable to the injection of noise in the data stream [23].

Various groups have proposed anomaly detection
for catching polymorphic attacks. PAYL [33] builds
a model of the byte distribution of normal traffic and
compares real traffic with this model. Increasingly so-
phisticated mimicry attacks [13, 12] are a problem and
spark many new developments in this direction [10, 9].

SigFree [35] observes that overflow attacks typically
contain executables whereas legitimate requests never
contain executables, and blocks attacks by detecting
the presence of code.

Brumley et al. propose vulnerability-based signa-
tures [4] that match a set of inputs (strings) satisfying
a vulnerability condition (a specification of a particu-
lar type of program bug) in the program. When fur-
nished with the program, the exploit string, a vulner-
ability condition, and the execution trace, the analysis
creates the vulnerability signature for different repre-
sentations, Turing machine, symbolic constraint, and
regular expression signatures.

Packet Vaccine [34] detects anomalous payloads,
e.g., a byte sequence resembling a jump address, and
randomizes it. Thus, exploits trigger an exception in
a vulnerable program. Next, it finds out information
about the attack (e.g., the corrupted pointer and its lo-
cation in the packet), and generates a signature, which
can be either based on determination of the roles played
by individual bytes, or it can be much like Covers [16].
In the former case, Packet Vaccine scrambles individ-
ual bytes in an effort to identify the essential inputs.
In the latter case, the engine finds the field containing
the jump address and estimate the length needed to
cause an overflow. These coarse signatures are subse-

quently refined by trying variations of the vaccine, that
is, the engine iteratively alters the size of the crucial
field, and checks for the program exception. Packet
Vaccine suffers from the same problems as Covers. It
neither checks for multiple separate fields, nor worries
about the granularity of the protocol dissector. Also, it
does not address the problem of attacks based on mal-
formed length fields mentioned earlier. By passing over
these issues, this approach may lead to false negatives
and positives.

3 Overflow attacks

Prospector caters to both heap and stack overflows.
Stack overflows are conceptually simple. Even so, they
prove to be hard to analyze automatically. Essentially,
a vulnerable buffer on the stack is overflown with net-
work data until it overwrites a target that may lead
to control flow diversion (typically the return address).
Observe that the data that is used for the overflow
may originate in more than one set of bytes in the net-
work flow (examples in practice include the well-known
Apache-Knacker exploit [28]). In Figure 1 this is illus-
trated by regions b1 and b2. Taking into account either
fewer or more protocol fields may lead both to false
positives and negatives. Covers [16], by using a single
protocol field, lacks accuracy in a multi-field attack.

There is another, more subtle reason why this may
occur, even if the attack does not use multiple fields:
the protocol dissector used to generate signatures may
work at different protocol field granularities than the
application. For instance, the dissector may iden-
tify subfields in a record-like protocol field as separate
fields, while the application simply treats it a single
protocol field. As a consequence, the two types of
misclassification described above may occur even for
‘single-field’ exploits. As we often do not have detailed
information about the application, this scenario is quite
likely. Again, solving the problem requires handling

3

‘multi-field’ attacks properly.
Gaps. The naive solution for finding the bytes that

contribute to the attack is to start at the point of at-
tack (the target in Figure 1) and grab every tainted
byte below that address until we hit a non-tainted byte.
Unfortunately, while all bytes that contributed to the
attack were tainted at some point, such a naive solu-
tion is really not adequate. First, there may be gaps

in the tainted block of memory that was used in the
attack. For instance, the code in Listing 1 may lead
to a gap, because the assignment to n occurs after the
overflow.

Unrelated taints. Second, the naive solution gathers
tainted blocks that are unrelated to the attack. An
example is the region marked by x in Figure 1. It may
be caused by left-over data tainted from an old stack
frame, or by safe buffers adjacent to the vulnerable
buffer, such as the buffer unrelated in Listing 1. In
this paper, we will informally refer to such unrelated
tainted data as unrelated taints.

Listing 1. Gaps and unrelated taints
1 . void r ead f rom socke t (int fd) {
2 . int n ;
3 . char vu lne rab l e bu f [8] ;
4 . char unre la ted [8] ;
5 . read (vu lne rab l e bu f , fd , 3 2) ;
6 . read (unre lated , fd , 8) ;
7 . n = 1 ; // untaint 4 prev ious l y ta in ted by tes
8 . return ;
9 . }

Heap corruption can be more complex than a stack
overflow and potentially more powerful. A simple over-
flow occurs when critical data (e.g., a function pointer)
is overwritten from a neighboring chunk of memory, or
from another field of a structure. In a more advanced

form, the attacker overflows link pointers that are used
to maintain a structure keeping free regions. It allows
an attacker to overwrite virtually any memory location
with any data [2]. The problem is caused by the imple-
mentation of memory allocation functions which store
control data together with the actual allocated mem-
ory, thus providing attackers potential access to infor-
mation used by the operating system memory manage-
ment.

The problem of gaps and unrelated taints also exists
for heaps and is mostly similar to that of the stack.
For heap overflows, instead of the occurrence of stale
tainted data from a previous function call, we may
encounter stale tainted data used in a previous func-
tion that allocated the memory region. In addition,
there may be taints in adjacent fields of a structure.
Advanced heap corruption attacks yield an additional
complication. Since the attacker can overwrite any
memory location with any contents, it is possible that
at detection time the memory region which was holding

the vulnerable buffer is reused and contains unrelated
data. If left unhandled, such a scenario would prevent
us from pin-pointing exactly the data responsible for
the intrusion attempt.

Length field attacks. Finally, numerous protocols
have fields specifying the length of another field, say
lf defining the length of field f. Attackers may ma-
nipulate this length value, and via heap overflows take
control of the host. First, a malicious message may
provide l1, with l1 ≫ lf and close to the maximum size
of an integer. The application allocates l = l1 +k bytes
(where k bytes are needed to store some application-
specific data), and l ends up being a small number be-
cause of the integer wrap-around, l ≪ l1. As a result,
the application copies l1 bytes into the buffer leading to
overflow. In a second scenario, rarely seen in the wild,
the attacker provides l2 smaller than expected, l2 < lf ,
the application allocates a buffer of size l2 which is not
sufficient to hold the data, and a subsequent copy op-
eration without boundary checks spills network data
over adjacent memory. Notice that we cannot draw
any conclusions about a message containing such at-
tacks by relying only on the observation that n fields
where involved with a combined length of N .

We conclude this section with the assumption that
overflows occur by writing bytes beyond the high end of
the buffer, since it makes the explanation easier. How-
ever, it is trivial to extend our techniques to handle
the reverse direction (attacks overwriting memory be-
low the start of a buffer).

4 Design

The main steps of Prospector ’s attack analysis are
sketched in Figure 1. In this section, we first describe
how we instrument the execution and what data is pro-
duced by our taint-analysis emulator. We then show
how we use this data to determine the exact bytes in
the attack. The memory that constitutes these bytes
will be referred to as the crucial region. Finally, we cor-
relate the information with protocol fields in network
data to obtain signatures.

4.1 Dynamic taint analysis

Prospector employs an efficient and reliable hard-
ware emulator that uses taint analysis to tag and track
network data [24]. Data originating in the network is
marked as tainted, and whenever it is copied to mem-
ory or registers, the new location is tainted also. We
raise an alert whenever the use of such data violates
security policies. To aid signature generation we dump
the content of all registers, as well as tainted memory

4

blocks to file, with markers specifying the address that
triggered the violation, the memory area it was point-
ing to, etc. In addition, we keep track of the exact
origin of a tainted memory area, in the form of an off-
set from the start of the network trace. In practice, the
offset is used as (32 bit) tag.

Even with such accurate administration of offsets,
the problem of identifying crucial regions remains. We
therefore extended the tracking in the temporal do-
main. In the next few sections we will explain the
blocks that together form our information correlation
engine. We start with support for an advanced heap
corruption attack, and then explain how we pinpoint
the relevant tainted memory region.

4.2 Dealing with advanced heap overflows

In the case of stack overflows and simple heap cor-
ruption attacks, we know from where to look for the
crucial regions: in the memory area beneath the viola-
tion address reported by the emulator. In contrast, ad-
vanced heap corruption attacks, require us to find first
the memory region containing the vulnerable buffer.
Only then we can start marking the bytes that con-
tributed to the attack.

Such attacks may easily lead to a situation in which
at detection time, the memory region that was hold-
ing the vulnerable buffer is reused and contains unre-
lated data. Prospector therefore marks the bytes sur-
rounding an allocated chunk of memory as red. When
tainted data that is written to a red region (represent-
ing an overflow, but not necessarily an attack), we keep
the application running, but dump the memory re-
gion covering the whole vulnerable buffer for potential
later use. This works as common memory management
systems store control data in-line together with allo-
cated chunks of memory. Consequently, the ‘red’ bytes
surrounding an allocated buffer contain control data,
which should never be overwritten with data coming
from the network.

In the case of an intrusion attempt, we search for the
violation address and the network index in the dumped
heap areas in order to find a memory region contain-
ing the buffer that contributed to the attack. These
chunks of memory allow us to perform further analysis
described in Section 4.8. Note that red markers are
quite different from StackGuard’s canary values [8], as
they are maintained by the emulator and trigger action
immediately when they are overwritten.

4.3 Dealing with malformed messages

To handle heap corruption attacks that use mal-
formed length fields, we check whether allocating a
chunk of memory relies on remote data. Whenever an
application calls malloc (size) with the size variable
being tainted, we associate the network origins of the
length parameter with the new memory chunk. In the
case of an intrusion attempt, it enables us to determine
the real cause, and generate a correct signature. For
details, see Section 4.9.1.

4.4 Age stamps

In order to distinguish between stale and relevant
data both on stack and heap we introduce an age stamp

indicating the relative age of data regions. AgeStamp is
a global counter, common to the entire OS running on
the emulator. The need for a system-wide global vari-
able stems from the fact that memory may be shared.

AgeStamp is increased whenever a function is called (a
new stack frame is allocated) or returns. To be precise,
we update AgeStamp v1 to (v1 + 1) only if in epoch v1 a
tainted value was stored in the memory. Otherwise it is
not necessary, as we shall soon see. If a tainted value is
copied to memory, we associate the current AgeStamp

with the destination memory location, i.e., for each
tainted value we remember the epoch in which it was
stored. In addition, for each process and lightweight
process we allocate a history buffer, where we store in-
formation about allocation and release of stack frames,
as follows: for each function call and return we store
the value pair (stack pointer, AgeStamp). When an ap-
plication allocates a buffer on the heap, we associate
the current AgeStamp with this memory region. When
a memory field becomes untainted, we do not clean the
age stamp value.

We observe that the order of age stamps in the cru-
cial region right after the overflow (before gaps appear)
is nondecreasing. We will use this observation in the
analysis phase to spot tainted bytes stored later than
the crucial tainted memory region, forming either a
gap, or an area of unrelated taints. For instance, the
unrelated buffer in Listing 1 has age stamps greater
than vuln buf, and so we can conclude that it does not
belong to the crucial memory region.

4.5 Additional indicators

Even though age stamps provide a crude separation
of unrelated taints, they are not powerful enough. Let
us consider an example vulnerable a fun function in
Figure 2. For simplicity we discuss a stack example,

5

19
19

19
19

19
19

20
19

19
19

20
20

19
19

1
1
0 1

20

20
20

20
20
20
20
20
20
20

0 1
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

20

20
20

20
20
20
20

0 1
0
0

0

0

1
1

1
1
1

20
1

0 0

20

20
20

20
20
20
20

0 1
0
0

0
0
0

1
1

1
1
1
1

20
20

20
1
0

1
0 0

20 0

1

120 0

19
19

19
20

19
19
19

2020
19
19

19
19

1 void a_fun(char *net_buf){
2 char buf[4];
3 char vuln_buf[4];
4 char *p;
5 p = net_buffer;
6 while(p)

8 for(i=0; i<4; i++)
9 buf[i] = net_buf[i];
10 }

(a) (b) (c) (d) (e) (f)

(a) memory allocation, AgeStamp=20; (b) assignment in line 5, and first iteration of the while loop, (c) second iteration of the while loop,

Since p is untainted, and we cannot deduce values of its associated indicators, they are left blank.

(d) remaining iterations of the while loop, (e) first iteration of the for loop, (f) remaining iterations of the for loop

7 vuln_buf[i]=net_buf[++i];

fresh tainted

stale tainted
untainted

vu
ln

_b
uf

ta
rg

et
bu

f
punrelated tainted

Figure 2. A series of the emulator’s memory maps presenting v alues associated with local variables
of a fun. The columns contain taintedness, AgeStamp, PFT and FTS indicators, respectively. The hard-
ware emulator cannot certainly distinguish between stale, fresh and unrelated tainted bytes. It just
says whether a memory location is tainted or not. The figure co ntains various patterns for clarity
reasons.

but the method is used for the heap also. The fig-
ure illustrates a series (a–f) of the emulator’s memory
maps presenting values associated with local variables
of a fun. For now, we limit our interest to the first two
columns containing information about taintedness and
AgeStamp, respectively. We assume that the example
function is executed in an epoch with AgeStamp equal to
20, so that the few existing tainted bytes with AgeStamp

19 are stale. Note that by using while and for loops,
a fun copies network data without any calls and thus
without incrementing AgeStamp. Even though we duly
raise an alert after step 2f, when the function returns
and is about to jump to an address influenced by the
attacker, the memory dump and the age stamps do not
provide the means to separate the relevant bytes from
the unrelated buffer buf. The reason is that vuln buf

and buf have the same AgeStamp.

To remedy this situation we introduce two extra
1-bit indicators for each memory location to let us
establish the order in which the buffers were filled:
PFT (Previous address Freshly Tainted) and FTS (First
Tainted Store), respectively. Intuitively, PFT indicates
for address a whether a − 1 was assigned fresh tainted
contents. If a is tainted, then PFT signifies that the
contents of a − 1 is more recent than that of a. The
FTS bit indicates that the tainted store at address a

was the first such store to a after a − 1 was tainted.
However, their exact meanings are defined by the al-
gorithm in Listing 2. As the semantics of these two
additional indicators are complex, we introduce them
by way of a detailed example.

4.6 Example explained

We return to the example in Figure 2 and examine
values of PFT and FTS, i.e., the values in the last two
columns of the memory maps.

The assignment operation in line 5 sets memory as-
sociated with p as untainted, and leaves Prospector ’s
markers untouched (Figure 2b).

This brings us to the execution of the while loop in
lines 6-7. The first iteration marks addrvuln buf tainted,
sets AgeStamp(addrvuln buf) to the current value of
AgeStamp, and PFT(addrvuln buf+1) to 1. We informally
interpret it as addrvuln buf telling (addrvuln buf+1): “I
have tainted contents, more fresh than yours”. We still
need to decide about FTS(addrvuln buf). As we do not
know the value of PFT(addrvuln buf), let us assume, for
example, that PFT is unset. In this case, addrvuln buf

has already ‘consumed the message’ from (addrvuln buf -
1), and so the current store operation is not the first
since (addrvuln buf -1) became tainted. We record this
information by unsetting FTS(addrvuln buf).

Figure 2c presents the second iteration of the while

loop in lines 6-7. We mark addrvuln buf+1 as tainted,
set AgeStamp(addrvuln buf+1) to the current value of
AgeStamp, and PFT(addrvuln buf+2) to 1, thus inform-
ing the memory location above it that addrvuln buf+1
has freshly tainted contents. This time we know that no
tainted store operation was executed since addrvuln buf

became tainted. We set FTS(addrvuln buf+1) to 1,
and also unset PFT(addrvuln buf+1), since the tainted
value of addrvuln buf+1 is more recent than that of
addrvuln buf .

Figure 2d illustrates the memory map just after the
while loop. Observe that all bytes inside the tainted

6

Listing 2. Algorithm for updating the indicators
i . for a l l t a in t ed s t o r e s to addr1 do :

1 . PFT[addr1+1] = 1 ;
// Explanation : address below addr1 i s ta in ted and more ’ f r e sh ’ than the contents of addr1

2 . i f (PFT[addr1] == 1) {
FTS[addr1] = 1 ;
PFT [addr1] = 0 ;

} else

FTS[addr1] = 0 ;
// Explanation : i f FTS[addr1]==1, the value at addr1 i s the r e s u l t of 1 s t ta in ted s tore to
// t h i s address a f t e r the address below i t was ta in ted . Also , the the content of addr1−1
// cannot be more recent than that of addr1 , so we negate PFT[addr1] .
// Final ly , i f addr1 i s updated more than once without change of addr1−1, then FTS[addr1]
// must be se t to 0 , as addr1 no longer contains a value of the f i r s t ta in ted s tore
// fo l l ow ing that at addr1−1.

3 . i f ((FTS[addr1] becomes 1) &&
(AgeStamp [addr1 −1] < AgeStamp [addr1])) {

s t o r e AgeStamp [addr1 −1] ; // StoredAgeStamp : for l a t e r use
}
// Explanation : i n t u i t i v e l y , t h i s happens when addr1 i s the f i r s t byte of a bu f f e r tha t was
// copied by a funct ion and no ta in ted data was stored here s ince the address below i t
// became ta in ted . Because i t could be the beginning of a new bu f f e r adjacent to an e x i s t i n g
// ta in ted region , we have to record i t . The exact reasons w i l l be c l a r i f i e d soon .

i i . When an addres i s untainted , we do not touch the va lues o f the PFT and FTS markers .

memory region which contributed to the attack have
PFT unset, and FTS set to 1.

This brings us to the for loop in lines 8-9, the first
iteration of which can be examined in Figure 2e. While
storing the first byte in the gap, we set PFT(addrbuf+1)
to 1, and also check that the current store operation is
not the first one since addrbuf -1 became tainted. In-
deed, the assignment in the fifth iteration of the while

loop held this property. So, we unset FTS(addrbuf).
Finally, Figure 2f presents the whole gap formed by

buf. Observe that the gap internally has PFT negated,
and FTS set, just like a ‘typical’ tainted region. How-
ever, the byte just above the gap has PFT set to 1, as a
result of the store in the fourth iteration of the for loop.
In that iteration, (addrbuf+3) informed the memory lo-
cation above it about its freshly tainted contents. Since
this was the last byte of the unrelated buffer, no store
operation has ‘consumed this message’. Similarly, the
bottom byte of the gap has both indicators negated.

Now that we have an intuitive grasp of the use of the
additional indicators, we are ready to turn to more for-
mal definitions (Section 4.7) and analysis (Section 4.8).

4.7 Formal specification of properties of
tainted data and gaps

In this section, we use the indicators defined above
to derive properties of regions of tainted memory.

Observation 1 Let buf be a crucial tainted region of size
n. Then:

(a) ∀i = 0 . . . (n − 1): buf[i] is tainted,

(b) ∀i = 0 . . . (n−1): AgeStampi ≥ AllocAgeStamp,
where AllocAgeStamp is the epoch in which
the buffer was allocated,

(c) ∀i, j = 0 . . . (n − 1), i < j: AgeStampi ≤
AgeStampj ,

(d) ∀i = 1 . . . (n − 1): PFT(buf[i]) is unset, and
FTS(buf[i]) is set (as the store at buf[i] finds
PFT set).

Observation 2 Let gap be a non-tainted discontinuity
located inside a crucial tainted memory region buf,
i.e., a region in buf where Observation 1.a does
not hold. Since neither age stamps nor indicators
are changed when a memory location becomes un-
tainted, Observations 1.b–1.d also hold within gap.

Observation 3 Let gap be a tainted discontinuity of
size m inside a crucial tainted memory region buf.
Then:

(a) ∀i = 0 . . . (m − 1) gap[i] is tainted,

(b) ∀i = 0 . . . (m − 1) AgeStamp(gap[i]) ≥
AgeStamp(gap[m]) 1.

(c) gap[m] has both indicators PFT and FTS set
to 1, gap[0] has both indicators set to 0.

(d) ∀i = 1 . . . (m − 1): PFT(gap[i]) is unset, and
FTS(gap[i]) is set.

A gap containing unrelated taints may adjoin a sim-
ilar gap. In that case, they simply merge as follows.

1While gap has only m bytes and gap[m] strictly speaking
does not exist, we use it as a C-like shorthand for ‘the byte above
gap’.

7

If gap is a tainted discontinuity located inside a crucial
region buf, and the bottom (top) part of gap adjoins an-
other tainted discontinuity gapb (gapt), then both holes
merge together forming a single discontinuity for which
all properties listed in Observation 3 hold.

4.8 Analysis: pinpointing the bytes re-
sponsible for the overflow

To find the bytes that contributed to the attack (the
crucial region), we traverse the memory downwards
starting at the violation address and continue as long
as the bytes we come across conform to Observation 1.
In this Section we discuss how to start this process and
how to overcome the complicating factors mentioned in
Section 3.

4.8.1 The age of allocation

We start the analysis by figuring out AllocAgeStamp,
the age (or epoch) in which the vulnerable buffer con-
taining the violation address was allocated. We need
it to distinguish between fresh and stale data.

In the case of a heap corruption attack, the age
stamp was explicitly maintained for each chunk of
memory. In a stack smashing attack (i.e., when the
violation address is not smaller than the value of the
stack pointer register ESP), we check the history of
stack frames associated with the vulnerable process for
the most recent entry above the violation address. If
the malicious data was spilled over the adjacent stack
frame as well, we may find an age stamp of a caller
function instead. However this does not prevent the
correct analysis, because when we start looking for the
whole crucial region later, we will figure out the most
recent, and proper AgeStamp.

4.8.2 Gaps

One of the difficulties identified in Section 3 concerned
gaps in the crucial region’s tainted data. As we have
seen, such discontinuities may occur for instance when
the program assigns a new value to a local variable
allocated in the crucial region after the overflow took
place. They can also arise if parts of the vulnerable
buffer are refilled by the application. Let us assume
for now that the discontinuity is fully included in the
crucial tainted memory region, i.e., below the gap there
is at least one byte which contributed to the attack.

Again, to find the crucial region we traverse the
memory as long as the bytes encountered are in ac-
cordance with Observation 1. However, we now come
across a discontinuity before we reach the region’s bot-
tom. To handle such gaps, we look for the end of the

discontinuity to find out how many bytes of the crucial
region we are missing. In the following, assume that
addr1 is a memory location at variance with at least
one of the properties of Observation 1.

If we find a byte at variance only with Observa-
tion 1.a (i.e., it is not tainted), we conclude that it
belongs to a non-tainted discontinuity. We traverse the
memory further until we encounter tainted data. Since
we assume that the gap does not reach the beginning
of the vulnerable buffer, we will find a tainted byte.

We can also find a byte in memory location addr1

at variance with Observation 1.d. This means that the
values of indicators are corrupted : PFT(addr1) is not
equal to 0 and/or FTS(addr1) is not equal to 1. If both
indicators are set to one, then the memory location be-
low has freshly tainted contents. Observation 3, defin-
ing gaps, says that it is probable that we have just spot-
ted a tainted discontinuity. We now traverse the mem-
ory until we encounter a memory location with the two
indicators not set. Let us now assume that the incon-
sistency with Observation 1.d means that FTS(addr1)
is equal to 0. At first sight, one may think that a new
tainted store operation at addr1 caused the change of
the indicator, but then the memory location above it
(addr1 +1) would have PFT set to 1, which would also
have conflicted with Observation 1.d. As we did not
detect this, such a case will not occur.

Similar reasoning yields that we will never discover
the top of a gap by coming across a byte with an
AgeStamp more recent than expected (i.e., at variance
with Observation 1.c). Indeed, a tainted store opera-
tion at addr1 changes PFT(addr1 + 1), which we will
encounter first.

4.8.3 Excess of data

We now discuss how to determine the beginning of the
vulnerable buffer buf, thus we address the problem of
unrelated taints. For the sake of simplicity, we again
assume that there is no discontinuity at the beginning
of buf, i.e., at the point of intrusion detection, buf[0]
contains the byte that contributed to the attack.

Consider the successive possible instances of the be-
ginning of the vulnerable buffer. For each of the sce-
narios we explicitly discuss the contents of essential
variables at the time of the overflow and at the time of
detecting the intrusion. For the sake of clarity let us
denote the memory location of buf[0] by addrB , and
the address below buf[0] by addrA. We assume that
traversing the memory as discussed above led us to
byte addrB , and we check whether we can draw appro-
priate conclusions enabling to spot correctly the buffer
boundary.

8

1. Overflow: PFT(addrB) equals 0; we set
FTS(addrB) = 0. Detection: We encounter a byte
with FTS set to 0, and we are not inside a discontinu-
ity. Thus we have just encountered the beginning of
buf. To make the conclusion clear, note that inside a
tainted vulnerable buffer there is only one possibility
for a byte to have the FTS indicator unset, namely at
the beginning of a gap.

2. Overflow: PFT(addrB) is equal to 1, but addrA

contains stale data; we set FTS(addrB) and unset
PFT(addrB). Detection: We encounter a byte with
FTS set and PFT unset, which has the stored age stamp
of the address beneath it. Observe that since the data
at addrA is stale, AgeStampaddrA is less than the cur-
rent age stamp, and recall from Listing 2, step i.3 that
we will have stored the age stamp in this case. We
compare this age stamp with AllocAgeStamp of buf to
conclude that at the time of overflow addrA’s value was
stale, so we have just encountered the beginning of the
vulnerable buffer.

3. Overflow: PFT(addrB) is equal to 1, addrA

contains fresh data; we set FTS(addrB) and unset
PFT(addrB). Since addrA merged with buf together
form an area that conforms to all the properties of a
crucial region (see Observation 1), we will treat addrA

as a part of the tainted buffer we are looking for. Note
that we cannot detect that addrA belongs to a distinct
variable. Most compilers (including gcc) allocate stack
memory for a few local variables at once, making it
impossible to see the boundaries between successive
buffers. Similarly, on the heap, memory is allocated
for a structure as a whole, rather than for the indi-
vidual fields separately. Detection: We come across
a byte with FTS set to 1. Regardless of the existence
of the stored age stamp of the memory location below
it, we will conclude that at the moment of overflow
addrA’s value was fresh, and so is supposed to belong
to the vulnerable buffer. Depending on the application
behavior between the moment of overflow and that of
detection, we will end up either adding unrelated taints
to the crucial tainted memory region or spotting a con-
tradiction with Observations 1-3 and reversing to the
last correct byte encountered, addrB . The first possi-
bility comes true only if (a) we reach a buffer that is
totally filled with network data, (b) the possible area
between this buffer and addrB appears exactly like an
unrelated tainted gap, and (c) additionally, the whole
region containing the buffer, the unrelated tainted gap,
and the crucial tainted memory region is in accordance
with Observations 1-3. Note however, that even in this
unlikely case we could only incur false negatives, and
never false positives, since the unrelated tainted buffer
needs to be filled totally.

We have not discussed what happens if the disconti-
nuity in the vulnerable buffer reaches the buffer’s bot-
tom. In principle, the analysis is analogous to the one
presented above. What is worth noting, is the fact
that we miss part of the crucial tainted memory re-
gion, since the bottom part of the vulnerable buffer
gets overwritten.

4.9 Signature Generation

After the preceding steps have identified the mali-
cious data in memory and generated a one-to-one map-
ping with bytes in the network trace, we generate sig-
natures capable of identifying polymorphic buffer over-
flow attacks. Using knowledge about the protocol gov-
erning the malicious traffic, we first list the protocol
fields including the crucial tainted memory region. Due
to possible excess of tainted data in rare scenarios de-
scribed in Section 4.8, we include a protocol field in a
signature either if it contains the violation address, or
if a cohesive part of it including at least one boundary
can be mapped to the indicated malicious data. We
call these fields critical.

Note that vulnerable code usually handles specific
protocol fields. Thus, attackers wishing to exploit a
certain vulnerability within this code, embed the attack
in these protocol fields. If values in such fields contain
more bytes than can be accommodated by the buffer,
an overflow is sure to occur.

4.9.1 Vulnerabilities rather than attacks

We generate signatures for stack and heap overflows
by specifying the vulnerability rather than the attack
itself. We do so by indicating the protocol fields that
should collectively satisfy a condition. In particular,
in the current version the signature specifies that the
fields should collectively have a length L that does not
exceed some maximum, lest they overflow important
values in memory. In the simple case with only one
protocol field responsible for the attack, L describes
the distance between the beginning of the protocol field
and the position in the network trace that contains
the value that overwrites the target. Otherwise, L is
augmented with the lengths of the remaining critical
fields. In both cases L is greater or equal to the length
of the vulnerable buffer. Signatures can be checked by
a protocol dissector (similar to Ethereal) that yields
the fields in a flow.

Heap overflows founded on malformed length

As mentioned earlier, for heap corruption attempts
that manipulate a length field signatures need to re-
late the critical fields to the length field. Thus, after

9

having determined the crucial tainted memory region
buf of length l, we check in the network trace for the
length value la provided by the attacker. If it is bigger
than l, we specify that a message contains an attack if
the cumulative length of the critical fields is less than la
with the length field greater or equal la. In the second
scenario, with la < l, we must be more cautious, since
the value provided by the attacker does not need to de-
fine the number of bytes, but it could describe amount
of integers or any other structures. For now we de-
scribe the malicious message similarly as in the case of
overflows regarding static-length buffers, requiring con-
formity of the length value with the actual size of the
protocol fields. Thus as a value for L we provide the
length field. To assure that the signature is correct we
need to verify it by checking whether Prospector spots
an illegal operation if we send a message with criti-
cal fields filled with arbitrary bytes in the size slightly
exceeding length field. If it appears we are wrong,
the only thing we can do is use the semantics of the
protocol for a description of the length field.

Multiple fields By handling multiple fields,
Prospector fixes and generalizes the signature gener-
ation in Covers [16]. Also, unlike Covers, we do not
require the protocol dissector to match the granularity
in which the application works with protocol mes-
sages. The granularity of the dissector may be larger
or smaller than that of the application. For instance,
the dissector may indicate that a message contains two
fields F1 and F2, while the application copies them
in one in a single buffer in one go (essentially treating
them as a single field F).

False positives Observe that whenever an applica-
tion with a given vulnerability receives network data
containing the corresponding critical fields with a col-
lective length exceeding L bytes, it will not fit in the
application buffer, even if it does not contain any mali-
cious data. Consequently passing it to the application
would be inappropriate. In other words, regardless of
content, the signatures will not incur false positives in
practice. However, in an unlikely scenario it is pos-
sible that we cannot correctly determine the crucial
tainted memory region, missing a protocol field. This
may happen if the gap in crucial tainted memory re-
gion reaches the beginning of the buffer, and contains
an extra protocol field not encountered before. Notice
however, that when we analyze a heap corruption at-
tack which overwrote control data (a red region) on
the heap, we will not miss any protocol fields, since the
memory dump is performed at the moment of corrup-
tion.

Polymorphism By focusing on properties like field
length, the signatures are independent of the actual
content of the exploit and hence resilient to polymor-
phism. By focusing on the vulnerabilities, they also
detect attacks with different payloads. Such behavior
is quite common, especially if part of the payload is
stored in the same vulnerable buffer. As the signatures
generated by Prospector identify vulnerabilities, they
are application specific. As a result, we may gener-
ate a signature that causes control flow diversion in a
specific version of an application, but there is no guar-
antee that this is also the case for a different version of
the same application. In other words, we need precise
information about the software we want to protect.

Value fields The critical fields and the condition
that should be satisfied constitute the first, unpolished
signature. In practice, however, we may want to char-
acterize more precisely what messages constitute an
attack. For instance, when the URL field is the critical
field that overflows a buffer in a Webserver, it may be
that the overflow only works on GET requests and not
for POST requests. In our protocol-specific approach
we therefore add a protocol module that determines
per protocol which fields may be considered important
(e.g., the request type in HTTP) and should therefore
be added to the signature. We call such fields value

fields as explained in the next section.

Before specifying the signatures, however, we em-
phasize that making less specific signatures is greatly
facilitated when the attack is fingerprinted, i.e., if we
know which bytes contributed to the attack. To con-
tinue the example, we could simply try to see if the
overflow also works for POST request, by crafting a
POST message with a similar URL field. We expect
much of this process can automated, although we have
not yet attempted to do so.

4.9.2 The final form of Prospector ’s signatures

Every signature consists of a sequence of value fields
and critical fields. A value field specifies that a field
in the protocol should have this specific value. For
instance, in the HTTP protocol a value field may spec-
ify that the method should be GET for this signature
to match, or it could provide the name of a vulnerable
Windows .dll. Critical fields, on the other hand, should
collectively satisfy some condition. For instance, they
should collectively have a length that is less/not less
than L. We can also put some boundaries on given
fields, like in the case of heap overflows based on mal-
formed messages. Example signatures can be found in
Section 6.1.

10

4.10 Double-free errors

We added a module to Prospector to make it deal
with double free attacks. Memory managers are some-
times exploited when a programmer makes the mistake
of freeing a pointer that was already freed. Double-
free errors do not share the characteristics of heap-
corruption attacks in the sense that they do not over-
flow a buffer, and so when considering the analysis they
require special treatment.

Double-free exploits may overwrite any location, re-
sembling the complex heap corruption attacks. Sim-
ilarly, it is highly probable that when a violation is
detected, the memory region that was holding the vul-
nerable buffer is reused and contains unrelated data.
To deal with this issue, whenever free (or realloc) is
called, we check for a potential double free error, as-
suring that the given memory location indeed points
to the beginning of an allocated buffer. Otherwise we
store the adjacent tainted memory region for possible
later use.

5 Implementation details

In this section, we discuss main aspects of our im-
plementation of Prospector on Linux using an x86 em-
ulator based on Qemu.

5.1 Prospector tagging

To deal with memory tagging Argos introduces a
structure similar to page directories in Linux consisting
of pagemaps and bytemaps. A pagemap is an array,
where each entry corresponds to a bytemap keeping
tags for a particular physical page. Here Argos stores
all tags on the guest operating system memory, e.g.,
the network offsets that serve as taint tags. Initially
only the pagemap is allocated. Bytemaps are added
on demand, when tainted data is copied to a particular
physical page for the first time. The network offset
tags associated with each byte are 32 bits. To support
signature generation we doubled the size of the tag,
yielding an additional 32 bits. Of these 32 bits, we
designate one bit for the PFT and FTS indicators, one
bit for the red marker denoting critical data on the
heap, and the remaining 29 bits for the age stamp.
We emphasize that age stamps serve only to compare
tainted data, so they need only be incremented if a
given value was used as a tag to mark tainted data. As
most functions and indeed most processes never touch
such data, the age stamp may remain untouched. As
a result, the age stamp will wrap much more slowly.

Qemu translates all guest instructions to host native
instructions by dynamically linking blocks of functions
that implement the corresponding operations. With
the aim of tracking tainted data being copied to mem-
ory we instrument the store function to perform the
operations of keeping track of age stamps and setting
the extra indicators (PFT and FTS) described in Sec-
tion 4.5. Here we also check whether the destination
memory location is not marked as red (which indicates
an overflow and perhaps a complex heap corruption
attack, and therefore leads to a dump of the adjacent
tainted memory).

5.2 Stale red markers

As mentioned earlier, to handle complex heap cor-
ruption attacks, we mark bytes surrounding allocated
chunks of memory as red. If tainted data is written
to a red region, this indicates illegal operations which
trigger bookkeeping: the memory region is dumped.
As we cannot rely on applications releasing all allo-
cated memory, we may end up with stale red markers,
possibly leading to unnecessary dumps of memory re-
gions. We describe here how we solve this problem by
removing false red indicators.

First of all, we keep counters indicating the number
of red markers associated with each physical page in
memory. To deal with the problem in the case of pages
for the user stack or kernel memory, we monitor new
entries added to the TLB as follows. We keep a table of
physical pages associated with the identifier of the last
process using it. Whenever a new entry correspond-
ing to a kernel address or the user stack is added to
the TLB buffer, we check whether the page has a new
owner, and if so, we make sure that it does not contain
any red markers. If so, we know that neither the user
stack nor kernel memory contains the markers.

For the heap we cannot use this method, since
dynamically allocated memory can easily be shared
between processes, which could remove our markers.
Thus, whenever a new buffer is allocated, we assure
that its contents do not contain any red regions. First,
we check the counter of red markers associated with
the given page and, if necessary, clean the memory.

6 Evaluation

We evaluate Prospector along two dimensions: ef-
fectiveness and performance. While performance is not
critical for a honeypot, it needs to be fast enough to
generate signatures in a timely fashion.

11

6.1 Effectiveness

To test our analysis and signature generation, we
launched a number of real attacks (as well as hand-
crafted ones) against Linux on top of Argos. We
have not experimented with Microsoft Windows since
a small part of the functionality in Prospector is OS-
specific, i.e., malloc and free function interposition
and (partly) process switch monitoring. For launch-
ing attacks, we used the Metasploit framework2 and
Milw0rm3. While we have tested Prospector with
many types of attack, in this section we illustrate how
Prospector deals with four representative stack- and
two heap overflow attacks. These are all real attacks,
exploiting real services.

PeerCast Stack Overflow A remote overflow ex-
ists in PeerCast v0.1216 and earlier [29]. It fails to
perform correct bounds checks on parameters passed in
a URL, resulting in a stack-based overflow. An overly
long query overwrites EIP stored on the stack. Our
analysis engine correctly separated stale data on the
stack. A 4-byte discontinuity in the critical tainted
memory region was encountered. The final signature
follows:

(app l i c a t i on : PeerCast , v e r s i on : v0 .1212 ,
(type : v a l u e f i e l d , name : method , value : GET) ,
(type : c r i t i c a l f i e l d , name : query) ,
(type : c r i t i c a l l e n g t h , value : 4 7 6)) .

Subversion Stack Overflow There is a remote
overflow in Subversion 1.0.2 [22] which fails to bounds
check when calling sscanf() to decode old-styled date
strings. In our experiment, an overly long week day

overwrites EIP stored on the stack. The resulting sig-
nature follows:

(app l i c a t i on : Subversion , v e r s i on : 1 . 0 . 2 ,
(type : v a l u e f i e l d , name : command ,
value : get−dated−rev) ,

(type : c r i t i c a l f i e l d , name : week day) ,
(type : c r i t i c a l l e n g t h , value : 2 0)) .

AlsaPlayer Stack Overflow A remote buffer over-
flow exists in AlsaPlayer 0.99.76 and earlier [18]. A
long “Location” field triggers an overflow in the recon-
nect function in reader/http/http.c. Our analysis en-
gine encountered a 4-byte discontinuity in the critical
tainted memory region. The final signature follows:

(app l i c a t i on : AlsaPlayer , v e r s i on : v . 0 . 9 9 . 7 6 ,
(type : v a l u e f i e l d , name : re sponse header ,
va lue : Locat ion) ,

(type : c r i t i c a l f i e l d , name : Locat ion Header) ,
(type : c r i t i c a l l e n g t h , value : 1 032)) .

2The Metasploit Project, http://www.metasploit.com.
3Milw0rm, www.milw0rm.com

WvTftp Heap Overflow. A heap-based overflow
in the WvTftp 0.9 allows remote attackers to execute
arbitrary code via a long option string in a TFTP
packet [26]. The option name value pairs are given as a
NULL terminated option name, followed by an ascii rep-
resentation of the number value. The function atoi()

is used on the value string, and as long as the original
part of the string equals a value > 8 and < 65464, the
string is strcpy’d into the heap buffer. By supplying a
long string for the value, the buffer can be overflown.
The emulator correctly noticed that the heap control
red region was overwritten with network data. The
resulting signature follows:
(app l i c a t i on : WvTFTP, ve r s i on : 0 . 9 ,

(type : v a l u e f i e l d name : Opcode ,
value : Read Request (1)) ,

(type : c r i t i c a l f i e l d , name : B lo ck s i z e opt ion) ,
(type : c r i t i c a l l e n g t h , value : 5 5 7)) .

Asterisk Heap Overflow The Asterisk Skinny
channel driver for Cisco SCCP phones in v1.0.11 and
earlier, v1.2.12 and earlier (chan skinny.so) incorrectly
validates a length value in the packet header. An in-
teger wrap-around leads to a heap overwrite, and ar-
bitrary remote code execution [27]. Asterisk checks
whether the inequality (length value+8 ≤ 1000) holds
to convince itself that the user-supplied message fits
in the local buffer of size 1000. Because of the in-
teger wrap, the result of the comparison is positive.
And then, the 4 bytes length are copied to the vulner-
able buffer, and a read operation is performed storing
(length value + 4) bytes of the message on the heap.
The emulator detects that the control red region on the
heap gets overwritten with network data, and dumps
the corresponding memory area. In the analysis phase,
we first come across the whole SKINNY message but
the length field (this part has the same age stamp).
Next, we include the 4 bytes underneath it, forming
the length, in the crucial tainted memory region (since
it is a tainted region with correctly fitting age stamps).
Thus the signature specifies the whole SKINNY Packet
for Asterisk 1.0.10 not to exceed 1000 bytes. Notice,
that even though the length field does not need to be
included in the signature, the attack description is still
absolutely correct.

libmusicbrainz Stack Overflow. A boundary er-
ror within the Download function in lib/http.cpp

(v. 2.1.2 and earlier) can be exploited to cause a buffer
overflow via a large “Location” field in a HTTP redirec-
tion received from a malicious MusicBrainz server [19].
Our analysis engine encountered a 4-byte discontinu-
ity in the critical tainted memory region. The final
signature follows:
(app l i c a t i on : l ibmus i cbra inz , v e r s i on : v . 2 . 1 . 2 ,

(type : v a l u e f i e l d , name : re sponse header ,

12

value : Locat ion) ,
(type : c r i t i c a l f i e l d , name : Locat ion Header) ,
(type : c r i t i c a l l e n g t h , value : 7 3)) .

6.2 Performance

For realistic performance measurements we compare
the speed of code running on Argos and Prospector

with that of code running without emulation. Note
that while this is an honest way of showing the slow-
down incurred by our system, it is not necessarily
the most relevant measure. After all, we do not use
Prospector as a desktop machine and in practice hardly
care whether results appear much less quickly than
they would without emulation. The only moment when
slowdown becomes an issue is when attackers decide to
shun slow hosts, because it might be a honeypot. To
the best of our knowledge, automated versions of such
attacks do not exist in practice.

Performance evaluation was carried out by compar-
ing the observed slowdown at guests running on top
of various configurations of Prospector and unmodified
Argos with the original host. The host used during
these experiments was an Intel(R) Xeon(TM) CPU at
2.8GHz with 2048KB of L2 cache, and 4GB of RAM,
running Gentoo Linux with kernel 2.6.15.4. The guest
OS ran Ubuntu Linux 5.05 with kernel 2.6.12.9, on top
of Qemu 0.8, Argos and Prospector . To quantify the
observed slowdown we used Apache 2.2.3. We measured
its throughput in terms of processed requests per sec-
ond and the corresponding average response time. We
used httperf for generating requests.

Figure 3 shows the results of the evaluation. We
tested the benchmark application at the guest running
over Argos, and two different configurations of Prospec-

tor : both with and without the double free extension
module. The graph shows that the achieved through-
put increases linearly with the offered load until the
server saturates at a load of 48 calls per second in the
case of Prospector and 57 for Argos. The response
time starts out at about 20-30ms, and then gradually
increases until the server becomes saturated. Beyond
this point, response time for successful calls remains
largely constant at 3000ms.

We can conclude that the overhead expressed in
throughput of a web server incurred by Prospector

compared to Argos is approximately 16%. We have
also performed measurements of slowdown in compar-
ison with the original host (refer to [24] for the full
performance evaluation of Argos.) Apache on Argos is
about 15 times slower than the one run on the native
operating system (on Prospector 18 times). We em-
phasize that we have not used any of the optimization
modules available for Qemu. These modules speed up

the emulator to a performance of roughly half that of
the native system. While it is likely that we will not
quite achieve an equally large speed-up, we are confi-
dent that much optimization is still possible. Moreover,
even though the performance penalty is large, personal
experience with Argos and Prospector has shown us
that it is tolerable.

7 Conclusions

We have described Prospector , an emulator capable
of tracking which bytes contribute to an overflow at-
tack on the heap or stack. By careful analysis, and
keeping track of the age of data, we manage to provide
such information with greater accuracy than previous
approaches while maintaining reasonable performance.
The information is important for security experts. We
have also used the information to generate signatures
for polymorphic attacks by looking at the length of pro-
tocol fields, rather than the actual contents. In prac-
tice, the number of false positives for the signatures
is negligible and the number of false negatives is also
low. At the same time, the signatures allow for efficient
filters.

References

[1] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. D.
Anagnostakis. Stride: Polymorphic sled detection through
instruction sequence analysis. In Proceedings of the 20th
IFIP/SEC 2005, 2005.

[2] Anonymous. Once upon a free().
http://doc.bughunter.net/buffer-overflow/free.html.

[3] W. X. S. Bhatkar and R. Sekar. Taint-enhanced policy en-
forcement: A practical approach to defeat a wide range of
attacks. In Proceedings of 15th USENIX Security Sympo-
sium, 2006.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based signa-
tures. In Proceedings of the 2006 IEEE Symposium on Se-
curity and Privacy, May 2006.

[5] R. Chinchani and E. Berg. fast static analysis approach
to detect exploit code inside network flows. In In Recent
Advances in Intrusion Detection, Seattle, WA, 2005.

[6] M. Christodorescu, S. Jha, S. Seshia, D. Song, and
R. Bryant. Semantics-aware malware detection. In Secu-
rity and Privacy Conference, Oakland, CA, May 2005.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: end-to-end contain-
ment of Internet worms. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles, 2005.

[8] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony,
Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
PerryWagle and Qian Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow At-
tacks. In 7th USENIX Security Symposium, 2002.

13

 30

 35

 40

 45

 50

 55

 60

 42 44 46 48 50 52 54 56 58 60

R
ep

lie
s

pe
r

se
c

Requests per sec

101

102

103

104

 42 44 46 48 50 52 54 56 58 60

R
es

po
ns

e
tim

e
[m

s]

Requests per sec

Argos - full version
Prospector w/o double free

Prospector - full version

Figure 3. Apache throughput in terms of maximum processed re quests per second, and the average
response time.

[9] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller.
Formalizing sensitivity in static analysis for intrusion detec-
tion. In Proceedings the IEEE Symposium on Security and
Privacy, Oakland, CA, 2004.

[10] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly detection using call stack information. In Proceed-
ings of the IEEE Security and Privacy Conference, Oak-
land, CA, 2003.

[11] P. Fogla and W. Lee. Evading network anomaly detection
systems: formal reasoning and practical techniques. In Pro-
ceedings of the 13th ACM CCS, 2006.

[12] J. T. Giffin, S. Jha, and B. P. Miller. Automated discovery
of mimicry attacks. In D. Zamboni and C. Krügel, editors,
RAID, volume 4219 of Lecture Notes in Computer Science.
Springer, 2006.

[13] C. Krügel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating mimicry attacks using static binary analysis. In
14th Usenix Security Symposium, Baltimore, MD, August
2005.

[14] C. Krügel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. In RAID, Seattle, WA, October 2005.

[15] C. Krügel and G. Vigna. Anomaly detection of web-based
attacks. In CCS ’03: Proceedings of the 10th ACM con-
ference on Computer and communications security, pages
251–261, New York, NY, USA, 2003. ACM Press.

[16] Z. Liang and R. Sekar. Fast and automated generation of at-
tack signatures: a basis for building self-protecting servers.
In Proceedings of the 12th ACM conference on Computer
and communications security, 2005.

[17] M. V. Mahoney. Network traffic anomaly detection based
on packet bytes. In SAC ’03: Proceedings of the 2003
ACM symposium on Applied computing, pages 346–350,
New York, NY, USA, 2003. ACM Press.

[18] National Vulnerability Database. CVE-2006-
4089 Multiple buffer overflows in AlsaPlayer.
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2006-4089,
2006.

[19] National Vulnerability Database. CVE-2006-
4197 Multiple buffer overflows in libmusicbrainz.
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2006-4197,
2006.

[20] J. Newsome, B. Karp, and D. X. Song. Polygraph: Auto-
matically generating signatures for polymorphic worms. In
IEEE Symposium on Security and Privacy, May 2005.

[21] J. Newsome and D. X. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In Proceedings of the NDSS,
2005.

[22] Open Source Vulnerability Database.
Subversion date parsing overflow.
http://osvdb.org/displayvuln.php?osvdbid=6301, 2004.

[23] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif.
Misleading worm signature generators using deliberate noise
injection. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy (S&P’06), May 2006.

[24] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an em-
ulator for fingerprinting zero-day attacks. In Proc. ACM
SIGOPS EUROSYS’2006, Leuven, Belgium, April 2006.

[25] A. Rahbar. Stack overflow on windows vista.
http://www.sysdream.com/article.php?story
id=241§ion id=77, July 2006.

[26] Secunia. CVE-2004-1636 WvTftp Buffer Overflow Vulner-
ability, October 2004.

[27] SecuriTeam. Asterisk skinny unauthenticated heap over-
flow, October 2006.

[28] SecurityFocus. CAN-2003-0245 Apache apr-
psprintf memory corruption vulnerability.
http://www.securityfocus.com/bid/7723/, 2003.

[29] SecurityFocus. CVE-2006-1148 Peer-
Cast Remote Buffer Overflow Vulnerability.
http://www.securityfocus.com/bid/17040/info, 2006.

[30] T. Toth and C. Krügel. Accurate buffer overflow detection
via abstract payload execution. In Recent Advances in In-
trusion Detection, 5th International Symposium, 2002.

[31] US-CERT. Vulnerability notes database. http://www.us-
cert.gov, 2007.

[32] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: vulnerability-driven network filters for preventing
known vulnerability exploits. SIGCOMM Comput. Com-
mun. Rev., 34(4):193–204, 2004.

[33] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-
based worm detection and signature generation. In Pro-
ceedings of the 8th International Symposium on Recent Ad-
vances in Intrusion Detection, 2005.

[34] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi.
Packet vaccine: black-box exploit detection and signature
generation. In Proceedings of the 13th ACM CCS, 2006.

[35] X. Wang, C.-C. Pan, P. Liu, and S. Zh. Sigfree: A signature-
free buffer overflow attack blocker. In Proceedings of 15th
USENIX Security Symposium, 2006.

14

