
DDE: Dynamic Data Structure Excavation

Asia Slowinska
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

asia@few.vu.nl

Traian Stancescu
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

tsu500@few.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

herbertb@few.vu.nl

ABSTRACT
Dynamic Datastructure Excavation (DDE) is a new approach to ex-
tract datastructures from C binaries without any need for debugging
symbols. Unlike most existing tools, DDE uses dynamic analysis
(on a QEMU-based emulator) and detects data structures by track-
ing how a program uses memory. Its results are much more accu-
rate than those of previous methods.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing; D.2.11 [Software Engineering]: Software Architectures

General Terms
Algorithms, Design, Experimentation

Keywords
binary, detecting data structures, dynamic analysis

1. INTRODUCTION
Debugging and reverse engineering of C binaries is difficult, es-

pecially in the absence of debugging symbols. Since programs tend
to be developed around the data structures, they arguably represent
the most important information that we need to recover. Unfortu-
nately, data structure recovery is exceedingly hard. Even the most
state of the art disassemblers and decompilers (like IDA Pro [9],
CodeSurfer [1] and boomerang [10]), while fairly good at recover-
ing code blocks, are hopeless at identifying data structures.

Data structure recovery is difficult, due to the gap between how
data appears in the source and in the binary. The compilation pro-
cess turns all variables into chunks of anonymous bytes. Data struc-
ture excavation is the art of mapping them back into meaningful
data structures. To our knowledge, no existing work can do this.

In this paper, we sketch our solution for data structure excava-
tion in x86 C binaries. Unlike most other approaches, we build
DDE primarily on dynamic rather than static analysis following

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0195-4/10/08 ...$10.00.

the simple intuition that memory access patterns reveal much about
the layout of the data structures. DDE is able to recover most data
structures in arbitrary (gcc-generated) binaries with a very high de-
gree of precision. While it is too early to claim that the problem of
data structure identification is solved, our work advances the state
of the art significantly. For instance, we are the first to extract:

• precise data structures on both heap and stack;

• not just aggregate structures, also individual fields;

• complicated structures like nested arrays.

Due to space limitations, we describe our techniques at a fairly
high level. Readers interested in all details are referred to our tech-
nical reports [14, 13]. All dynamic analysis techniques were imple-
mented in an instrumented processor emulator based on Qemu [4].
Since the processor emulator is available only for Linux, the imple-
mentation is also for Linux. However, the approach is not specific
to a particular operating system.

Data structures detected by DDE can be used to partially gen-
erate symbol tables on the fly [13], which in turn aids debugging,
forensics and reverse engineering. In addition, DDE could allow us
to retrofit security onto existing binaries. Specifically, the informa-
tion gathered by the analysis can be used to protect legacy binaries
against buffer overflows [13].

2. ARCHITECTURE
DDE recovers data structures by observing how memory is used

at runtime. In the CPU, all memory accesses occur via pointers
either using direct addressing or indirectly, via registers. The intu-
ition behind our approach is that memory access patterns provide
clues about the layout of data in memory. For instance, if A is a
pointer, then a dereference of *(A+4) suggests that the program-
mer (and compiler) created a field of size 4 at A. Intuitively, if A is
a function frame pointer, *(A+8) and *(A-8) are likely to point
to a function argument passed via the stack, and a local variable,
respectively. Likewise, if A is an address of a structure, *(A+4)
presumably accesses a field in this structure, and finally, in the case
of an int[] array, *(A+4) is its second element. Distinguish-
ing between these three scenarios is one of the challenges we need
to address. In this section, we discuss the major problems, and in
Section 2.1 we explain how we tackle them.

Memory allocation context. Our work aims to analyse a pro-
gram’s use of memory, which includes local function variables allo-
cated on the stack, memory allocated on heap, and static variables.
Both the runtime stack and heap are reused constantly, and so a de-
scription of data structures here needs to be coupled with a context.

13

typedef struct { <fun>:
int x; [1] push %ebp
int y; [2] mov %esp, %ebp
} elem_t; [3] sub $0x10, %esp

[4] mov $0x1, -0xc(%ebp)
void fun() { [5] mov $0x2, -0x8(%ebp)
elem_t elem, *pelem; [6] mov -0x4(%ebp), %eax
elem.x = 1; [7] mov $0x3, 0x4(%eax)
elem.y = 2; [8] leave
pelem = &elem; [9] ret
pelem->y = 3;
}

Figure 1: The function initializes its local variable elem. Pointer
pelem is located at offset -4 in the function frame, and structure elem
at -0xc. Instructions 4 and 5 initialize x and y, respectively. Register
eax is loaded with the address of pelem in instruction 6, and used to
update field y in 7.

For the stack, each invocation of a function usually holds the
same set of local variables and therefore start addresses of functions
are sufficient to identify function frames. A possible exception
occurs with memory allocated by calls to functions like alloca,
which may depend on the control flow. As a result, the frames of
different invocations could differ. DDE handles these cases in a
generic way, but we refer to [14] for details.

Heap memory, however, is more complicated. Consider a
my_malloc wrapper function which invokes malloc and checks
whether the return value is null. Since my_malloc can be used
to allocate memory for various structures and arrays, we should
not associate the memory layout of a data structure allocated by
my_malloc to my_malloc itself, but rather to its caller. As we
do not know the number of such malloc wrappers in advance, we
associate heap memory with a call stack (typically, the top 3 or 4
function calls are sufficient for accurate identification).

Static memory, finally, is not reused, and so can be uniquely
identified solely with its address.

Pointer identification. To analyze memory access patterns, we
need to identify pointers in the running binary. Moreover, for a
given address B=A+4, we need to know A, the base pointer from
which B was derived. However, on architectures like x86, there
is little distinction between registers used as addresses and scalars.
Worse, the instructions to manipulate them are the same. We only
know that a particular register holds a valid address, when it is
dereferenced. In our instrumented emulator, we therefore explic-
itly track how new pointers are derived from existing ones.

Missing base pointers. Recall that we recover data structures
by observing memory accesses: new structure fields are detected
when they are referenced from the structure base. However, struc-
ture fields are sometimes used without reference to a pointer to
the data structure, and thus we may overlook the link between the
fields. Figure 1 illustrates the problem. Notice that field elem.y is
initialized via the frame pointer register ebp rather than the address
of elem. Only the update instruction 7 hints at the existence of the
structure. Otherwise, we would characterize this memory region as
composed of 3 separate variables: pelem, x, y (on the other hand,
since in that case the program does not actually use the connection
between the fields x and y, this partially inaccurate result would be
innocuous).

Multiple base pointers. Another issue is that memory loca-
tions can be accessed through multiple base pointers, so we need

to decide on the most appropriate one. Observe that field elem.y

from Figure 1 is already referred to using two different base point-
ers, the frame pointer ebp and pelem (eax). Even though this
particular case seems tractable (as pelem is itself based on ebp),
the problem in general is knotty. For instance, programs often use
functions like memset and memcpy to initialize and copy data struc-
tures. Such functions access all bytes in a structure sequentially,
typically with a stride of one word. Clearly, we should not classify
each access as a separate word-sized field. In fact, this is a serious
problem for all even the most advanced approaches to date (e.g.,
DIVINE [2]). In our opinion, treating such functions in a special
way (by blacklisting, say) is a bad solution, as it will handle the
known functions, but not similar ones that are part of the applica-
tion itself. Instead, as we shall see DDE uses a heuristic that lets
us dynamically select the “less common” layout. In other words,
it favours data structures with different fields over an array of inte-
gers.

Code coverage. As our analysis is performed dynamically, the
accuracy increases if we execute more of the program’s code paths.
Code coverage techniques (using symbolic execution and constraint
solving) force a program to execute all/most of its code [6]. We do
not discuss this further in this paper. Recent work at EPFL explains
how to do this for binaries [7].

2.1 Our approach

2.1.1 Function call stack
As a first step in the analysis, our technique keeps track of the

function call stack. As DDE runs the program in an instrumented
processor emulator, it can dynamically observe call and ret in-
structions, and the current position of the runtime stack. A compli-
cating factor is that sometimes call is used not to invoke a real
function, but rather only to push the return address. Similarly, not
every ret has a corresponding call instruction.

We define a function as the target of a call instruction which
returns with a ret instruction. Values of the stack pointer at the
time of the call and at the time of the return match, giving a simple
criterion for detecting uncoupled call and ret instructions. Note
that a function reached by means of a jump instruction is merged
with the caller. We discuss impact of that on the analysis in [14].

2.1.2 Pointer tracking
We determine base pointers dynamically by tracking the way in

which new pointers are derived from existing ones, and observing
how the program dereferences them. In addition, we extract root
pointers that are not derived from any other pointers. Root pointers
initialize statically allocated memory, heap and stack.

For the reason of pointer tracking, we extended the processor
emulator so that each memory location has a tag, bp_memtag(addr),
which stores its base pointer. In other words, a tag specifies how the
address of a memory location was calculated. Likewise, if a general
purpose register holds an address, an associated tag, bp_regtag(reg),
identifies its base pointer.

We first present tag propagation rules, and only afterwards ex-
plain how root pointers are determined.

When a new root pointer A is encountered, we set bp_memtag(A)
to a constant value root to mark that A has been accessed, but not
derived from any other pointers. When a pointer A (root or not) is
loaded from memory to a register reg, we set bp_regtag(reg) to
A.

The program may now manipulate the pointer using pointer arith-
metic (e.g., add, sub, or and). To simplify the explanation, we as-

14

sume the common case, where pointers are manipulated completely
before they are stored to memory, i.e., the intermediate results of
pointer arithmetic operations are kept in registers only. This is not
a limitation; it is easy to handle the case where a program stores the
pointer to memory first, and then manipulates and uses it later.

During pointer arithmetic, we do not update the bp_regtag(reg),
but we do propagate the tag to destination registers. As an exam-
ple, let us assume that after a number of arithmetic operations, the
new value of reg is B. Only when the program dereferences reg
or stores it to memory, do we associate B with its base pointer
which is still kept in bp_regtag(reg). In other words, we set
bp_memtag(B) to A. This way we ensure that base pointers always
indicate valid application pointers, and not intermediate results of
pointer arithmetic operations.

Extracting root pointers. We distinguish between three types
of root pointers: (a) those that point to statically allocated memory,
(b) those that point to newly allocated dynamic memory, (c) the
start of a function frame which serves as a pseudo root pointer for
the local variables.

Dynamically allocated memory. To allocate memory at run-
time, user code in Linux invokes either one of the memory alloca-
tion system calls (e.g., mmap, mmap2), or it uses one of the libc

memory allocation routines (e.g., malloc). Since each memory
region is analyzed as a single entity, we need to retrieve their base
addresses and sizes. DDE uses the emulator to intercept both. Inter-
cepting the system calls is easy - we need only inspect the number
of each syscall made. For libc routines, we determine the offsets
of the relevant functions in the library, and interpose on the corre-
sponding instructions once the library is loaded.

Statically allocated memory. Root pointers to statically allo-
cated memory appear in two parts of an object file: the data section
which contains all variables initialized by the user - including point-
ers to statically allocated memory, and the code section - which
contains instructions used to access these data. To extract root
pointers, we initially load pointers stored in well-defined places in
a binary, e.g., ELF headers, or relocation tables, if present. Next,
during execution, if an address A is dereferenced, bp_memtag(A)
is not set, and A does not belong to the stack, we conclude that
we have just encountered a new root pointer to statically allocated
memory. Later, if we come across a better base pointer for A than A

itself, bp_memtag(A) gets adjusted.

Stack memory. Function frames contain arguments, local vari-
ables, and possibly temporary data used in calculations. Typically,
local variables are accessed via the function frame pointer, EBP,
while the remaining regions are relative to the current stack posi-
tion (ESP).

As we do not analyze temporary variables, we need to keep track
of pointers rooted (directly or indirectly) at the beginning of a func-
tion frame only (often, but not always, indicated by EBP). Usually,
when a new function is called, 8 bytes of the stack are used for
the return address and the caller’s EBP, so the callee’s frame starts
at (ESP-8). However, other calling conventions are also possi-
ble [14]. This means that we cannot determine where the function
frame will start. To deal with this uncertainty, we overestimate the
set of possible new base pointers, and mark all of them as possible
roots. Thus, we emphasise that DDE does not rely on the actual
usage of the EBP register. If, due to optimizations, EBP does not
point to the beginning of the function frame, nothing bad happens.

2.1.3 Multiple base pointers
As a memory location A is often accessed through multiple base

pointers, we need to pick the most appropriate one. Intuitively,
selecting the base pointer that is closest to the location, usually
increases the number of hops to the root pointer, and so provides a
more detailed description of a (nested) data structure.

However, functions like memset and memcpy often process com-
posite data structures. These functions are completely unaware of
the actual structure and simply access the memory in word-size
strides. Thus, for 32 bit machines, such functions continuously cal-
culate the next address to dereference by adding 4 to the previous
one covering the entire data structure in 4 byte strides. By applying
the aforementioned heuristic of choosing the closest base pointer,
we could easily build a meaningless recursively nested data struc-
ture.

For structs the solution is often simple. When the program
accesses the memory twice, once with constant stride equal to the
word size (e.g., in memset) and once in a different manner (when
the program accesses the individual fields), we should pick the lat-
ter. In arrays, however, multiple loops may access the array. To deal
with this problem, we use a similar intuition and detect arrays and
structures dynamically with a heuristic preference for non-regular
accesses and/or accesses at strides not equal to the word size. For
instance, if a program accesses a chunk of memory in two loops
with strides 4, and 12, respectively, we will pick as base point-
ers those addresses that correspond to the latter loop. Intuitively,
a stride of 12 is more likely to be specific to a data structure lay-
out than the generic 4. Our current array detection introduces three
kinds of loop accesses: (1) accesses with non-constant stride, e.g.,
an array of strings, (2) accesses with a constant stride not equal to
the word-size, e.g., 1 or 12, and (3) accesses with stride equal to the
word-size. Our heuristic, then, is as follows. First select the base
pointers in the best possible category (lower is better), and next, if
needed, pick the base pointer closest to the memory location.

2.1.4 Array detection
As indicated above, DDE needs to detect memory accesses in

loops. Specifically, we should detect how loops access arrays. This
is quite hard and a general solution must handle the following dif-
ficult cases: (a) multiple loops placed in sequence, (b) nested se-
quences of loops, (c) inner loops and outer loops not iterating over
the same array, and (d) first and last array element handling outside
the loop.

In real code, there are two popular schemes of deriving array
element addresses: (1) relative to the base of an array, realized
in instructions like elem=array[i], and (2) relative to the previ-
ous element, new=*(pprev++). Our algorithms handle both cases.
However, for simplicity’s sake, we discuss the latter only, when the
array is accessed in the most inner loop and leave the discussion of
the alternative case to [14].
New=*(pprev++) access. DDE identifies each loop with an id

(lid) which it assigns to the loop head at runtime when the back
edge is taken for the first time. At this point this loop head is pushed
on a stack. So, if a loop executes just once and never branches back
for a second iteration, it does not get a new lid. The current loop
head is pushed on a stack and DDE assigns the top lid as a tag
to each byte of memory the code accesses. Thus memory accesses
in the first iteration of a loop get the parent lid. Tags are kept
similarly to bp_memtag, in the emulator.

DDE’s core algorithm for detecting arrays is as follows: when a
pointer B, derived from base pointer A, is dereferenced in iteration
i, while A was dereferenced in a previous iteration, DDE treats A
as a likely array element. It stores information about the array in

15

the loop head. The more iterations are executed, the more array
elements DDE discovers.

Because we often access the first and last elements in an ar-
ray outside the loop, DDE explicitly checks for extending the ar-
ray. First, it looks for earlier memory accesses at the base pointers
used to recursively derive the first element of the array, and checks
whether they have a lid that is just below the top of the stack. Sec-
ond, it looks for memory location based at the last element of the
array, and checks whether it has the same lid.

In addition, DDE should also find arrays accessed in a non-
sequential way. If an instruction in the loop accesses a set of ad-
dresses, we check whether they can be mapped to a linear space,
stride * x + offset. This is similar to the array detection
in Polyglot [5]. However, this basic approach does not work well
if the loop body has multiple if/switch branches, and so multiple
instructions accessing the same array. To deal with this issue, we
check whether array intervals associated with instructions are inter-
leaving, and if necessary take the sum of them.

Summarizing, we use the combination of the two aforementioned
methods: detecting sequential, and non-sequential array access.
This enables DDE to detect nested arrays, hash tables and many
other complex cases. (Again, see [13] for details.) The array de-
tection techniques in DDE are more complicated than what we
sketched. While in rare cases DDE may overestimate the size of
the array, its heuristics appear to work well in practice.

2.1.5 Final mapping
Having detected arrays and the most appropriate base pointers,

DDE finally maps the analyzed memory into meaningful data struc-
tures. For a memory chunk, the mapping starts at a root pointer and
reaches up to the most distant memory location still based (directly
or indirectly) at this root. For static memory, the mapping is per-
formed at the end of the program execution. Memory allocated
with malloc is mapped when it is released using free, while local
variables and function arguments on the stack are mapped when a
function returns.

Mapping a memory region without arrays is straightforward. Es-
sentially, memory locations which share a base pointer form fields
of a data structure rooted at this pointer, and on the stack, mem-
ory locations rooted at the beginning of a function frame represent
local variables and function arguments.

When a potential array is detected, we check if it matches the
data structure pattern derived from the base pointers. If not, the
array hypothesis is discarded. For example, if base pointers hint
at a structure with variable length fields, while the presumed array
has fields of 4B, DDE assumes the accesses are due to functions
like memset.

The analysis may find multiple interleaving arrays (each corre-
sponding to its own data structure access pattern indicated by base
pointers). If such arrays are not included in one another, we merge
them. Otherwise, we examine the base pointers further to see if the
arrays are nested.

3. RESULTS
DDE can analyse any application that runs on the Linux guest

on our (QEMU-based) emulator. To verify its accuracy, we com-
pare the results to the actual data structures in the programs. This is
not entirely trivial. We cannot compare to the original source code
since aggressive compiler optimizations may change the binary sig-
nificantly [3]. Also, DDE cannot discover variables that always re-
main unused, but this probably should not count as a ’missed’ data
structure.

We first applied the analysis to a host of handwritten programs

as well as to the UNIX fortune program. We managed to exercise
71% of all fortune’s functions, which variables account for 77%
of all variables used by the application. On stack, DDE analyzed
correctly 83% of variables (which account for 82% of stack mem-
ory). Further, 9% of variables were unused (which account for 13%
of stack memory), and in the case of 6% of variables (1% in terms
of memory usage) structure fields were classified as separate fields
and not as belonging to one structure. (We explained reasons for
that in Figure 1.) In the case of heap, we can observe less unused
variables: 90% of memory was analyzed accurately, and 9% was
again flattened - an 88-byte FILEDESC structure contains a nested
12-byte STRFILE structure which was not spotted.

We also analyse DDE’s performance for other, more complex bi-
naries, these include the Linux loader ld-2.9.so, the Apacheweb
server, wget, grep, gzip, glines, binutils, and gnometris.
Further evaluation can be found in [13].

Limitations. DDE is not flawless. While evaluating it we identi-
fied the following limitations.

1. DDE cannot recognise nested structs if the inner struct is
never accessed separately. In that case, DDE just returns a
single large structure. As the result is equivalent, we do not
consider this a problem.

2. DDE does not detect arrays if a loop is executed less than 4
times (in that case it is classified as a structure).

3. DDE cannot classify fields that the program never accesses.

4. DDE cannot currently deal with custom memory allocators.
If the program allocates a pool which serves various data
structures, and is reused in the runtime, DDE does not han-
dle that correctly. DDE does not detect the custom allocation
routine, and thus it gets confused with the interleaving data
structures.

Note that even if DDE cannot classify an array or structure cor-
rectly in one particular loop or function, it may still get it right
eventually. Often data structures are accessed in more than one
function, yielding multiple loops to analyse the layout.

4. RELATED WORK
Most existing approaches to decompilation build on static anal-

ysis of binaries. The most advanced techniques in this field include
value set analysis (VSA) [1], and aggregate data structure inspec-
tion (ASI) [12]. The culmination of these static techniques is a
combination of VSA and ASI [2].

The idea of ASI originates in efforts to deal with the Y2K prob-
lem in old COBOL programs. Translated into C terms, ASI at-
tempts to partition memory chunks statically in structs of arrays
and variables. For instance, if a stack frame holds 40 bytes for local
variables, and the program reads 4 bytes at offset 8 in the range, ASI
classifies the 40 bytes as a sturct with one 4-byte variable wedged
between 2 arrays. As more addresses are referenced. ASI eventu-
ally obtains an approximate mapping of variable-like locations.

ASI has also a clever trick to identify data structures and types,
and that is to use the type information from system calls and well-
known library functions. As the arguments of these calls are known,
at every such call, ASI tags the arguments with the corresponding
types and propagates these tags through the (static) analysis.

At this point, however, we have to mention that all of these static
techniques have problems handling even the most basic aggregate
data structures, like arrays. Nor can they handle other common pro-
gramming cases. For instance, if a C struct is copied using a func-
tion like memcpy, it will be misclassified as having many fields of

16

4 bytes (on 32 bit machines) simply because the stride in memcpy
on 32 bit machine is 4). Similarly, they cannot deal with functions
like ‘alloca’. Finally [2] is context-sensitive, which leads to state
space explosion. The reported results show that even the most triv-
ial programs take an exceedingly long time to analyse.

Another system that uses dynamic analysis for data structure re-
covery is Laika [8], which uses dynamic analysis for data structure
recovery. It employs Bayesian unsupervised learning to detect data
structures. However, its detection is very imprecise and limits it-
self to aggregates. For instance, it may observe chunks of bytes in
what looks like a list, but it does not know about fields in structures.
For debugging and reverse engineering, this is wholly insufficient.
The authors are aware of this and use Laika only to estimate, in an
approximate manner, the similarity of malware.

REWARDS [11] builds on the part of ASI that propagate type in-
formation from known parameter types (of system calls and library
functions). Unlike ASI, however, it does so dynamically, during
program execution. All data structures that are used in, or derived
from, systems calls or known templates are correctly identified.
However, REWARDS is (fundamentally) not capable of detecting
data structures that are internal to the program.

DDE emphatically does not need any known type to recover data
structures, but whenever such information is available, we can take
advantage of it to recover semanatics. For instance, it might help
to recognize a structure as a sock_addr structure.

5. CONCLUSIONS
We have described a new technique, known as DDE, for ex-

tracting data structures from binaries dynamically without access
to source code or symbol tables, by observing how program access
memory during execution. As until now data structure extraction
for C binaries was not possible, we expect DDE to be valuable for
the fields of debugging, reverse engineering, and security.

Acknowledgments
This work is sponsored by the EU FP7 Wombat and the EU FP7
SysSec projects.

6. REFERENCES
[1] G. Balakrishnan and T. Reps. Analyzing memory accesses in

x86 binary executables. In Proc. Conf. on Compiler
Construction (CC), April 2004.

[2] G. Balakrishnan and T. Reps. DIVINE: Discovering
variables in executables. In Proc. Conf. on Verification Model
Checking and Abstract Interpretation (VMCAI), January
2007.

[3] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum.
WYSINWYX: What you see is not what you execute. In In
Verified Software: Theories, Tools, Experiments, page 1603,
2007.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In
Proc. of the USENIX Annual Technical Conference, 2005.

[5] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
automatic extraction of protocol message format using
dynamic binary analysis. In CCS ’07: Proceedings of the
14th ACM conference on Computer and communications
security, 2007.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2008), 2008.

[7] V. Chipounov and G. Candea. Reverse engineering of binary
device drivers with RevNIC. In EuroSys ’10: Proceedings of
the 5th European conference on Computer systems, Paris,
France, April 2010.

[8] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for
data structures. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2008, pages
255–266, San Diego, CA, December 2008.

[9] DataRescue. High level constructs width IDA Pro.
http://www.hex-rays.com/idapro/
datastruct/datastruct.pdf, 2005.

[10] M. V. Emmerik and T. Waddington. Using a decompiler for
real-world source recovery. Working Conference on Reverse
Engineering, 0:27–36, 2004.

[11] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering
of data structures from binary execution. In Proceedings of
the 17th Annual Network and Distributed System Security
Symposium (NDSS’10), San Diego, CA, March 2010.

[12] G. Ramalingam, J. Field, and F. Tip. Aggregate structure
identification and its application to program analysis. In
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, 1999.

[13] A. Slowinska, T. Stancescu, and H. Bos. Give me back my
datastructures! - excavating data structures from stripped
binaries. Technical Report IR-CS-57, Vrije Universiteit
Amsterdam, May 2010.

[14] A. Slowinska, T. Stancescu, and H. Bos. Precise data
structure excavation. Technical Report IR-CS-55, Vrije
Universiteit Amsterdam, February 2010.

17

