
Body armor for binaries: preventing buffer overflows without recompilation

Asia Slowinska
Vrije Universiteit Amsterdam

Traian Stancescu
Google, Inc.

Herbert Bos
Vrije Universiteit Amsterdam

Abstract

BinArmor is a novel technique to protect existing
C binaries from memory corruption attacks on both
control data and non-control data. Without access to
source code, non-control data attacks cannot be detected
with current techniques. Our approach hardens binaries
against both kinds of overflow, without requiring the pro-
grams’ source or symbol tables. We show thatBinArmor
is able to stop real attacks—including the recent non-
control data attack on Exim. Moreover, we did not in-
cur a single false positive in practice. On the downside,
the current overhead ofBinArmor is high—although no
worse than competing technologies like taint analysis
that do not catch attacks on non-control data. Specifi-
cally, we measured an overhead of 70% forgzip , 16%-
180% forlighttpd , and 190% for thenbench suite.

1 Introduction

Despite modern security mechanisms like stack protec-
tion [16], ASLR [7], and PaX/DEP/W⊕X [33], buffer
overflows rank third in the CWE SANS top 25 most dan-
gerous software errors [17]. The reason is that attackers
adapt their techniques to circumvent our defenses.

Non-control data attacks, such as the well-known at-
tacks oneximmail servers (Section 2), are perhaps most
worrying [12, 30]. Attacks on non-control data are hard
to stop, because they do not divert the control flow, do
not execute code injected by the attacker, and often ex-
hibit program behaviors (e.g., in terms of system call pat-
terns) that may well be legitimate. Worse, for binaries,
we do not have the means to detect themat all.

Current defenses against non-control data attacks all
require access to the source code [20, 3, 4]. In contrast,
security measures at the binary level can stop various
control-flow diversions [15, 2, 19], but offer no protec-
tion against corruption of non-control data.

Even for more traditional control-flow diverting at-

tacks, current binary instrumentation systems detect only
the manifestationsof attacks, rather than the attacks
themselves. For instance, they detect a control flow di-
version thateventuallyresults from the buffer overflow,
but not the actual overflow itself, which may have oc-
curred thousands of cycles before. The lag between time-
of-attack and time-of-manifestation makes it harder to
analyze the attack and find the root cause [27].

In this paper, we describeBinArmor, a tool to bolt a
layer of protection on C binaries that stops state-of-the-
art buffer overflows immediately (as soon as they occur).

High level overview Rather than patching systems af-
ter a vulnerability is found,BinArmor is proactive and
stops buffer (array) overflows in binary software, before
we even know it is vulnerable. Whenever it detects an at-
tack, it will raise an alarm and abort the execution. Thus,
like most protection schemes, we assume that the system
can tolerate rare crashes. Finally,BinArmor operates in
one of two modes. InBA-fields mode, we protect indi-
vidual fields inside structures. InBA-objects mode, we
protect at the coarser granularity of full objects.

BinArmor relies on limited information about the pro-
gram’s data structures—specifically the buffers that it
should protect from overflowing. If the program’s sym-
bol tables are available,BinArmor is able to protect
the binary against buffer overflows with great precision.
Moreover, in BA-objects mode no false positives are pos-
sible in this case. While we cannot guarantee this in BA-
fields mode, we did not encounter any false positives in
practice, and as we will discuss later, they are unlikely.

However, while researchers in security projects fre-
quently assume the availability of symbol tables [19], in
practice, software vendors often strip their code of all de-
bug symbols. In that case, we show that we can use auto-
mated reverse engineering techniques to extract symbols
from stripped binaries, and that this is enough to pro-
tect real-world applications against real world-attacks.
To our knowledge, we are the first to use data structure

1

 if a pointer that
 first pointed
 into an array...

...later accesses
 an area outside
 the array...

crash()
Find arrays
in binaries.

Find accesses
to arrays.

Rewrite the binary:
- assign colours to arrays
- check colors on
 every array access

owned

(i) (ii) (iii)

Fig. 1: BinArmoroverview.

recovery to prevent memory corruption. We believe the
approach is promising and may also benefit other sys-
tems, like XFI [19] and memory debuggers [24].

BinArmorhardens C binaries in three steps (Fig. 1):

(i) Data structure discovery:dynamically extract the
data structures (buffers) that need protection.

(ii) Array access discovery:dynamically find poten-
tially unsafe pointer accesses to these buffers.

(iii) Rewrite:statically rewrite the binary to ensure that
a pointer accessing a buffer stays within its bounds.

Data structure discovery is easy when symbol tables
are available, but very hard when they are not. In the
absence of symbol tables,BinArmoruses recent research
results [29] to reverse engineer the data structures (and
especially the buffers) from the binary itself by analyzing
memory access patterns (Fig. 1, step i). Something is a
struct, if it is accessed like a struct, and an array, if it
is accessed like an array. And so on. Next, given the
symbols,BinArmor dynamically detects buffer accesses
(step ii). Finally, in the rewrite stage (step iii), it takes
the data structures and the accesses to the buffers, and
assigns to each buffer a unique color. Every pointer used
to access the buffer for the first time obtains the color
of this buffer. BinArmor raises an alert whenever, say, a
blue pointer accesses a red byte.

Contributions BinArmorproactively protects existing
C binaries, before we even know whether the code is vul-
nerable, against attacks on control dataand non-control
data, and it can do so either at object or sub-field gran-
ularity. Compared to source-level protection like WIT,
BinArmorhas the advantage that it requiresno access to
source code or the original symbol tables. In addition,
in BA-fields mode, byprotecting individual fieldsin-
side a structure rather than aggregates,BinArmoris finer-
grained than WIT and similar solutions. Also, it prevents
overflows on both writesand reads, while WIT protects
only writes and permits information leakage. Further, we
show in Section 9 that points-to analysis (a technique re-
lied on by WIT), is frequently imprecise.

Compared to techniques like taint analysis that also
targetbinaries, BinArmor detects both control flow and
non-control flow attacks, whereas taint analysis detects
only the former. Also, it detects attacksimmediately
when they occur, rather than sometime later, when a
function pointer is used.

The main drawback ofBinArmor is the very signif-
icant slowdown (up to 2.8x for the lighttpd webserver
and 1.7x for gzip). While better than most tainting sys-
tems (which typically incur 3x-20x), it is much slower
than WIT (1.04x for gzip). Realistically, such slow-
downs makeBinArmor in its current form unsuitable for
any system that requires high performance. On the other
hand, it may be used in application domains where se-
curity rather than performance is of prime importance.
In addition, becauseBinArmor detects buffer overflows
themselves rather than their manifestations, we expect it
to be immediately useful for security experts analyzing
attacks. Finally, we will show later that we have not ex-
plored all opportunities for performance optimization.

Our work builds on dynamic analysis, and thus suffers
from the limitations of all dynamic approaches: we can
only protect what we execute during the analysis. This
work is not about code coverage. We rely on existing
tools and test suites to cover as much of the binary as
possible. Since coverage is never perfect, we may miss
buffer accesses and thus incur false negatives. Despite
this,BinArmordetected all 12 real-world buffer overflow
attacks in real-world applicationswe study(Section 8).

BinArmor takes a conservative approach to prevent
false positives (unnecessary program crashes). For in-
stance, no false positives are possible when the protec-
tion is limited to structures (BA-objects mode). In BA-
fields mode, we can devise scenarios that lead to false
positives due to the limited code coverage. However, we
did not encounter any in practice, and we will show that
they are very unlikely.

Since our dynamic analysis builds on Qemu [6] pro-
cess emulation which is only available for Linux, we tar-
get x86 Linux binaries, generated bygcc (albeit of var-
ious versions and with different levels of optimization).
However, there is nothing fundamental about this and the
techniques should apply to other systems also.

2 Some buffer overflows are hard to stop:
the Exim attack on non-control data

In December 2010, Sergey Kononenko posted a message
on theeximdevelopers mailing list about an attack on the
eximmail server. The news was slashdotted shortly af-
ter. The remote root vulnerability in question concerns a
heap overflow that causes adjacent heap variables to be
overwritten, for instance an access control list (ACL) for
the sender of an e-mail message. A compromised ACL

2

is bad enough, but ineximthe situation is even worse. Its
powerful ACL language can invoke arbitrary Unix pro-
cesses, giving attackers full control over the machine.

The attack is a typical heap overflow, but what makes
it hard to detect is that it does not divert the program’s
control flow at all. It only overwrites non-control data.
ASLR, W⊕X, canaries, system call analysis—all fail to
stop or even detect the attack.

Both ‘classic’ buffer overflows [18], and attacks on
non-control data [12] are now mainstream. While attack-
ers still actively use the former (circumventing existing
measures), there is simplyno practical defense against
the latter in binaries. Thus, researchers single out non-
control data attacks as a serious future threat [30].Bin-
Armor protects against both types of overflows.

3 What to Protect: Buffer Accesses

BinArmor protects binaries by instrumenting buffer ac-
cesses to make sure they are safe from overflows.
Throughout the paper,a bufferis an array that can poten-
tially overflow. Fig. 1 illustrates the general idea, which
is intuitively simple: once the program has assigned an
array to a pointer, it should not use the same pointer to ac-
cess elements beyond the array bounds. For this purpose,
BinArmorassigns colors to arrays and pointers and veri-
fies that the colors of memory and pointer match on each
access. After statically rewriting the binary, the resulting
code runs natively and incurs overhead only for the in-
structions that access arrays. In this section, we explain
how we obtain buffers and accesses to them when sym-
bols are not available, while Sections 5–7 discuss how
we use this information to implement fine-grained pro-
tection against buffer overflows.

3.1 Extracting Buffers and Data Structures

Ideally, BinArmor obtains information about buffers
from the symbol tables. Many projects assume the avail-
ability of symbol tables [19, 24]. Indeed, if the binary
does come with symbols,BinArmoroffers very accurate
protection. However, as symbols are frequently stripped
off in real software, it uses automated reverse engineer-
ing techniques to extract them from the binary.Bin-
Armoruses a dynamic approach, as static approaches are
weak at recovering arrays, but, in principle, they work
also [26].

Specifically, we recover arrays usingHoward [29],
which follows the simple intuition that memory access
patterns reveal much about the layout of data structures.
In this paper, we sketch only the general idea and re-
fer to the originalHoward paper for details [29]. Using
binary code coverage techniques [13, 9], Howard exe-
cutes as many of the execution paths through the binary

as possible and observes the memory accesses. To de-
tect arrays, it first detects loops and then treats a memory
area as an array if (1) the program accesses the area in
a loop (either consecutively, or via arbitrary offsets from
the array base), and (2) all accesses ‘look like’ array ac-
cesses (e.g., fixed-size elements). Moreover, it takes into
account array accesses outside the loop (including ‘first’
and ‘last’ elements), and handles a variety of complica-
tions and optimizations (like loop unrolling).

Since arrays are detected dynamically, we should not
underestimate the size of arrays, lest we incur false posi-
tives. If the array is classified as too small, we might de-
tect an overflow when there is none. InHoward, the data
structure extraction is deliberately conservative, so that
in practice the size of arrays is either classified exactly
right, or overestimated (which never leads to false posi-
tives). The reason is that it conservatively extends arrays
towards the next variable below or above.Howard is very
unlikely to underestimate the array size for compiler-
generated code and we never encountered it in any of our
tests, although there is no hard guarantee that we never
will. Size underestimation is possible, but can happen
only if the program accesses the array with multiple base
pointers, and behaves consistently and radically different
in all analysis runs from the production run.

Over a range of applications, Howard never underes-
timated an array’s size and classified well over 80% of
all arrays on the executed paths ‘exactly right’—down to
the last byte. These arrays represent over 90% of all ar-
ray bytes. All remaining arrays are either not classified
at all or overestimated and thus safe with respect to false
positives.

We stressed earlier thatHoward aims to err on the safe
side, by overestimating the size of arrays to prevent false
positives. The question is what the costs are of doing
so. Specifically, one may expect an increase in false neg-
atives. While true in theory, this is hardly an issue in
practice. The reason is thatBinArmoronly misses buffer
overflows that (1) overwrite values immediately follow-
ing the real array (no byte beyond the (over-)estimation
of the array is vulnerable),and (2) that overwrite a value
that the program did not use separately during the dy-
namic analysis of the program (otherwise, we would not
have classified it as part of the array). Exploitable over-
flows that satisfy both conditions are rare. For instance,
an overflow of a return value would never qualify, as
the program always uses the return address separately.
Overall, not a single vulnerability in Linux programs for
which we could find an exploit qualified.

One final remark about array extraction and false pos-
itives; as mentioned earlier,BinArmor does not care
which method is used to extract arrays and static extrac-
tors may be used just as well. However, this is not en-
tirely true. Not underestimating array sizes is crucial.

3

We consider the problem of finding correct buffer sizes
orthogonal to the binary protection mechanism offered
by BinArmor. Whenever we discuss false positives in
BinArmor, we always assume that the sizes of buffers are
not underestimated.

3.2 Instructions to be Instrumented

WhenBinArmordetects buffers to be protected, it dy-
namically determines the instructions (array accesses),
that need instrumenting. The process is straightforward:
for each buffer, it dumps all instructions that access it.

Besides accesses,BinArmor also dumps all instruc-
tions that initialize or manipulate pointers that access ar-
rays.

4 Code Coverage and Modes of Operation

SinceBinArmor is based on dynamic analysis, it suf-
fers from coverage issues—we can only analyze what
we execute. Even the most advanced code coverage
tools [9, 13] cover just a limited part of real programs.
Lack of coverage causesBinArmor to miss arrays and
array accesses and thus incur false negatives. Even so,
BinArmor proved powerful enough to detectall attacks
we tried (Section 8). What we really want to avoid are
false positives: crashes on benign input.

In BinArmor, we instrument only those instructions
that we encountered during the analysis phase. However,
a program path executed at runtime,pR, may differ from
all paths we have seen during analysisA, {pa}a∈A, and
yet pR might share parts with (some of) them. Thus, an
arbitrary subset of array accesses and pointer manipula-
tions onpR is instrumented, and as we instrument ex-
actly those instructions that belong to paths in{pa}a∈A,
it may well happen that we miss a pointer copy, a pointer
initialization, or a pointer dereference instruction.

With that in mind, we should limit the color checks
performed byBinArmor to program paths which use ar-
ray pointers in ways also seen during analysis. Intu-
itively, the more scrupulous and fine-grained the color
checking policy, the more tightly we need to constrain
protected program paths to the onesseen before. To
address this tradeoff, we offer two modes ofBinArmor
which impose different requirements for the selection of
program paths to be instrumented, and offer protection at
different granularities: coarse-grainedBA-objectsmode
(Section 5), and fine-grainedBA-fieldsmode (Section 6).

5 BA-objects mode: Object-level Protection

Just like other popular approaches, e.g., WIT [3] and
BBC [4], BA-objects mode provides protection at the
level of objects used by a program. To do so,BinArmor

assigns a color to each buffer1 on stack, heap, or in global
memory. Then it makes sure that a pointer to an object of
color X never accesses memory of color Y. This way we
detect all buffer overflows that aim to overwrite another
object in memory.

5.1 What is Permissible? What is not?

Figs. (2.a-2.b) show a function with some local vari-
ables, and Fig. (2.c) shows their memory layout and col-
ors. In BA-objects mode, we permit memory accesses
within objects, such as the two tick-marked accesses in
Fig. (2.c). In the first case, the program perhaps iterates
over the elements in the array (at offsets 4, 12, and 20
in the object), and dereferences a pointer to the sec-
ond element (offset 12) by addingsizeof(pair t) to
the array’s base pointer at offset 4. In the second case,
it accesses theprivileged field of mystruct via a
pointer to the last element of the array (offset 24). Al-
though the program accesses a field beyond the array,
it remains within the local variablemystruct , and (like
WIT and other projects), we allow such operations in this
mode. Such access patterns commonly occur, e.g., when
a memset() -like function initializes the entire object.

However,BinArmorstops the program from accessing
the len andp fields through a pointer into the structure.
len , p andmystruct are separate variables on the stack,
and one cannot be accessed through a pointer to the other.
Thus,BinArmor in BA-objects mode stops inter-object
buffer overflow attacks, but not intra-object ones.

5.2 Protection by Color Matching

BinArmoruses colors to enforce protection. It assigns
colors to each word of a buffer1, when the program al-
locates memory for it in global, heap, or stack memory.
Each complete object gets one unique color. All memory
which we do not protect gets a unique background color.

When the program assigns a buffer of color X to a
pointer,BinArmorassociates the same color with the reg-
ister containing the pointer. The color does not change
when the pointer value is manipulated (e.g., when the
program adds an offset to the pointer), but it is copied
when the pointer is copied to a new register. When the
pointer is stored to memory, we also store its color to a
memory map, to load it later when the pointer is restored.

From now on,BinArmor vets each dereference of the
pointer to see if it is still in bounds. Vetting pointer deref-
erences is a matter of checking whether the color of the
pointer matches that of the memory to which it points.

Stale Colors and Measures to Rule out False Positives
Due to lack of coverage, a program path at runtime may

1Or a struct containing the array as this mode operates on objects

4

typedef struct pair {
 int x; int y;
} pair_t;

struct s {
 int age;
 pair_t buf[3];
 int privileged;
} mystruct;

/* initialize the buffer */
int *p;
int len = 3; // buf length

for(p = (int*)mystruct.buf;
 p < mystruct.buf+len; p++)
 *p = 0;

(b) Init code. (d) Color tags.

C0 C1 C2 C3

(e) The masks shield all
shades except the first two.

with
 m

ask
s,

all
th

ese

co
lo

rs

m
atc

h!

but t
his

acc
ess

will
fa

il

(c) Color tags.

C

Fig. 2: BinArmorcolors in BA-objects mode (c) and BA-fields modes (d,e) for sample data structures (a) and code (b).

lack instrumentation on some pointer manipulation in-
structions. This may lead to the use of astalecolor.

Consider a function likememcpy(src,dst) . Sup-
pose thatBinArmor misses thedst buffer during anal-
ysis (it was never used), so that it (erroneously) does not
instrument the instructions manipulating thedst pointer
prior to calling memcpy() —say, the instruction that
pushesdst on the stack. Also suppose thatmemcpy() it-
self is instrumented, so the load of thedst pointer into a
register obtains the color of that pointer. However, since
the original push was not instrumented,BinArmornever
set that color! If we are lucky, we simply find no color,
and everything works fine. If we are unlucky, we pick
up a stale color of whatever was previously on the stack
at that position2. As soon asmemcpy() dereferences the
pointer, the color check fails and the program crashes.

BinArmor removes all false positives of this nature by
adding an additional tag to the colors to indicate to which
memory address the color corresponds. The tag func-
tions not unlike a tag in a hardware cache entry: to check
whether the value we find really corresponds to the ad-
dress we look for. For instance, ifeax points todst , the
tag contains the addressdst . If the program copieseax

to ebx , it also copies the color and the tag. When the
program manipulates the register (e.g.,eax++), the tag
incurs the same manipulation (e.g., tageax++). Finally,
when the program dereferences the pointer, we check
whether the color corresponds to the memory to which
the pointer refers. Specifically,BinArmorchecks the col-
ors on a dereference ofeax , iff (tageax==eax). Thus, it
ignores stale colors and prevents the false positives.

Pointer Subtraction: What if Code is Color Blind?
The colors assigned byBinArmorprevent a binary from

2There may be stale colors for the stack value, because it is not
practical to clean up all colors whenever memory is no longer inuse.

accessing object X though a pointer to object Y. Even
though programs in C are not expected to do so, some
functions exhibit “color blindness”, and directly use a
pointer to one object to access another object. The
strcat() and strcpy chk() functions in current
libc implementations on Linux are the best known exam-
ples: to copy a source to a destination string, they access
both by the same pointer—adding thedistancebetween
them to access the remote string.

Our current solution is straightforward. WhenBin-
Armordetects a pointer subtraction, and later spots when
the resultant distance is added to the subtrahend to ac-
cess the buffer associated with the minuend pointer, it
resets the color to reflect the remote buffer, and we pro-
tect dereferences in the usual way.

If more complex implementations of this phenomenon
appear, we can prevent the associated dereferences from
being checked at all. To reach the remote buffer, such
scenarios have an operation which involves adding a
value derived from the distance between two pointers.
BinArmor would not include it in the set of instructions
to be instrumented, so that the tag of the resultant pointer
will not match its value, and the color check will not be
performed. False positives are ruled out.

Other projects, like WIT [3] and the pointer analysis-
based protection in [5], explicitly assume that a pointer
to an object can only be derived from a pointer to the
same object. In this sense, our approach is more generic.

5.3 Expect the Unexpected Paths

To justify that BinArmor effectively rules out false
positives, we have to show that all program paths exe-
cuted at runtime do not exhibit any false alerts. As we
discussed in Section 4, a program path at runtime,pR,
may differ from all paths seen during analysis, while
sharing parts with (some of) them. Thus,pR may ac-

5

cess an array, while some of the instructions associated
with these accesses are not instrumented. The question
is whetherpR may cause false positives.

SupposepR accesses an array. Ifarr is a pointer to
this array, 3 generic types of instruction might be missed,
and thus not instrumented byBinArmor: (1) anarr ini-
tialization instruction, (2) anarr update/manipulation
instruction, and (3) anarr dereference instruction.

The crucial feature ofBinArmor which prevents false
positives in cases (1) and (2) are the tags introduced in
Section 5.2. They check whether the color associated
with a pointer corresponds to the right value. In the case
of a pointer initialization or a pointer update instruction
missing, the pointer tag does not match its value any-
more, its color is considered invalid, and it is not checked
on dereferences. Finally, if anarr dereference instruc-
tion is not instrumented, it only means that the color
check is not performed. Again, it can only result in false
negatives, but never false positives.

6 BA-fields mode: a Colorful Armor

BA-objects mode and BA-fields mode differ significantly
in the granularity of protection. Where BA-objects mode
protects memory at the level of objects, BA-fields mode
offers finer-grained protection—at the level of fields in
structures. Thus, BinArmor in BA-fields mode stops not
only inter-object buffer overflow attacks, but also intra-
object ones. We shall see, the extra protection increases
the chances of false positives which should be curbed.

6.1 What is Permissible? What is not?

Consider the structure in Fig. (2.a) with a memory lay-
out as shown in Fig. (2.d). Just like in BA-objects mode,
BinArmornow also permits legitimate memory accesses
such as the two tick-marked accesses in Fig. (2.d).

But unlike in BA-objects mode,BinArmor in BA-
fields mode stops the program from accessing the
privileged field via a pointer into the array. Similarly,
it prevents accessing thex field in one array element from
they field in another. Such accesses that do not normally
occur in programs are often symptomatic of attacks3.

6.2 Shaded Colors

BinArmoruses ashadedcolor scheme to enforce fine-
grained protection. Compared to BA-objects mode, the
color scheme used here is much richer. In Section 5, the
whole object was given a single color, but in BA-fields
mode, we add shades of colors to distinguish between

3Note: if theydooccur, eitherHoward classifies the data structures
differently, orBinArmor detects these accesses in the analysis phase,
and appliesmasks(Section 6.2), so they do not cause problems.

individual fields in a structure. First, we sketch how we
assign the colors. Next, we explain how they are used.

SinceBinArmorknows the structure of an object to be
protected, it can assign separate colors to each variable
and to each field. The colors are hierarchical, much like
real colors: lime green is a shade of green, and dark lime
green and light lime green, are gradations of lime green,
etc. Thus, we identify a byte’s color as a sequence of
shades:C0 : C1 : .. : CN , where we interpretCi+1 as a
shade of colorCi. Each shade corresponds to a nesting
level in the data structure. This is illustrated in Fig. (2.d).

The base color,C0, corresponds to the complete ob-
ject, and is just like the color used byBinArmor in BA-
objects mode. It distinguishes between individually al-
located objects. At level 1, the object in Fig. (2.d) has
three fields, each of which gets a unique shadeC1. The
two integer fields do not have any further nesting, but the
array field has two more levels: array elements and fields
within the array elements. Again, we assign a unique
shade to each array element and, within each array ele-
ment, to each field. The only exceptions are the base of
the array and the base of the structs—they remain blank
for reasons we explain shortly. Finally, each colorCi

has a type flag indicating whether it is an array element
shown in the figure as a dot (a small circle on the right).

We continue the coloring process, until we reach the
maximum nesting level (in the figure, this happens at
C3), or exhaust the maximum color depthN . In the lat-
ter case, the object has more levels of nesting thanBin-
Armor can accommodate in shades, so that some of the
levels will collapse into one, ‘flattening’ the substructure.
Collapsed structures reduceBinArmor’s granularity, but
do not cause problems otherwise. In fact, most existing
solutions (like WIT [3] and BBC [4]) operate only at the
granularity of the full object.

Protection by Color Matching The main difference
between the color schemes implemented in BA-objects
mode and BA-fields mode is that colors are more com-
plex now and include multiple shades. We need a new
procedure to compare them, and decide what is legal.

The description of the procedure starts in exactly the
same way as in BA-objects mode. When a buffer of color
X is assigned to a pointer,BinArmorassociates the same
color with the register containing the pointer. The color
does not change when the pointer value is manipulated
(e.g., when the program adds an offset to the pointer), but
it is copied when the pointer is copied to a new register.
When the program stores a pointer to memory, we also
store its color to a memory map, to load it later when the
pointer is restored to a register.

The difference from the BA-objects mode is in the
color update rule: when the program dereferences a reg-
ister, we update its color so that it now corresponds to

6

the memory location associated with the register. The
intuition is that we do not update colors on intermediate
pointer arithmetic operations, but that the colors repre-
sent pointers used by the program to access memory.

From now on,BinArmor vets each dereference of the
pointer to see if it is still in bounds. Vetting pointer deref-
erences is a matter of checking whether the color of the
pointer matches that of the memory it points to—in all
the shades, from left to right. Blank shades serve as wild
cards and match any color. Thus, leaving bases of struc-
tures and arrays blank guarantees that a pointer to them
can access all internal fields of the object.

Finally, we handle the common case where a pointer
to an array element derives from a pointer to another ele-
ment of the array. Since array elements in Fig. (2c) differ
in C2, such accesses would normally not be allowed, but
the dots distinguish array elements from structure fields.
Thus we are able to grant these accesses. We now illus-
trate these mechanisms for our earlier examples.

Suppose the program has already accessed the first ar-
ray element by means of a pointer to the base of the array
at offset 4 in the object. In that case, the pointer’s ini-
tial color is set toC1 of the array’s base. Next, the pro-
gram addssizeof(pair t) to the array’s base pointer
and dereferences the result to access the second array el-
ement. At that point,BinArmorchecks whether the col-
ors match.C0 clearly matches, and since the pointer has
only theC1 color of the first array element, its color and
that of the second array element match. Our second ex-
ample, accessing they field from the base of the array,
matches for the same reason.

However, an attacker cannot use this base pointer to
access theprivileged field, because theC1 colors do
not match. Similarly, going from they field in the second
array element to thex field in the third element will fail,
because theC2 shades differ.

The Use of Masks: What if Code is Color Blind?
Programs do not always access data structures in a way
that reflects the structure. They frequently use functions
similar tomemset to initialize (or copy) an entire object,
with all subfields and arrays in it. Unfortunately, these
functions do not heed the structure at all. Rather, they
trample over the entire data structure in, say, word-size
strides. Here is an example. Supposep is a pointer to an
integer and we have a custommemset-like function:

for (p=objptr, p<sizeof(* objptr); p++) * p = 0;

The code is clearly ‘color blind’, but while it violates
the color protection,BinArmor should not raise an alert
as the accesses are all legitimate. But it should not ignore
color blindness either. For instance, the initialization of
one object should not trample overotherobjects. Or in-

side the structure of Fig. (2.b): an initialization of the
array should not overwrite theprivileged field.

One (bad) way to handle such color blindness is to
white-list the code. For instance, we could ignore all
accesses from white-listed functions. While this helps
against some false alerts, it is not a good solution for two
reasons. First, it does not scale; it helps only against a
few well-known functions (e.g., libc functions), but not
against applications that use custom functions to achieve
the same. Second, as it ignores these functions alto-
gether, it would miss attacks that use this code. For in-
stance, the initialization of (just) the buffer could over-
flow into the privilege field.

Instead,BinArmor exploits the shaded colors of Sec-
tion 6.2 to implementmasks. Masks shield code that is
color blind from some of the structure’s subtler shades.
For instance, when the initialization code in Fig. (2.b) is
applied to the array, we filter out all shades beyondC1:
the code is then free to write over all the records in the
array, but cannot write beyond the array. Similarly, if an
initialization routine writes over the entire object, we fil-
ter all shades exceptC0, limiting all writes to this object.

Fig. (2.e) illustrates the usage of masks. The code on
the left initializes the array in the structure of Fig. 2. By
masking all colors beyondC0 andC1, all normal ini-
tialization code is permitted. If attackers can somehow
manipulate thelen variable, they could try to overflow
the buffer and change theprivileged value. However,
in that case theC1 colors do not match, andBinArmor
will abort the program.

To determine whether a memory access needs masks
(and if so, what sort),BinArmor’s dynamic analysis first
marks all instructions that trample over multiple data
structures as ‘color blind’ and determines the appropriate
mask. For instance, if an instruction accesses the base of
the object,BinArmorsets the masks to block out all col-
ors exceptC0. If an instruction accesses a field at the kth

level in the structure,BinArmor sets the masks to block
out all colors exceptC0...Ck. And so on.

Finding the right masks to apply and the right places to
do so, requires fairly subtle analysis.BinArmorneeds to
decideat runtimewhich part of the shaded color to mask.
In the above example, if the program initializes the whole
structure,BinArmor sets the masks to block out all col-
ors exceptC0. If the same function is called to initialize
the array, however, onlyC2 andC3 are shielded. To do
so,BinArmor’s dynamic analysis tracks thesourceof the
pointer used in the ‘color blind’ instruction, i.e., the base
of the structure or array. The instrumentation then allows
for accesses to all fields included in the structure (or sub-
structure) rooted at this source. Observe that not all such
instructions need masks. For instance, code that zeros all
words in the object by adding increasing offsets to the
baseof the object, has no need for masks. After all, be-

7

cause of the blank shades the base of the object permits
access to the entire object even without masks.

BinArmor enforces the masks when rewriting the bi-
nary. Rather than checking all shades, it checks only the
instructions’visiblecolors for these instructions.

Pointer Subtraction As discussed in Section 5.2,
some functions exhibit color blindness, and use a pointer
to one object to access another. Both the problem and its
solution are exactly the same as for BA-fields mode.

6.3 Why We do Not See False Positives

Given an accurate or conservative estimate of array
sizes, the only potential cause of false positives is lack
of coverage. As explained in Section 5, we do not ad-
dress the array size underestimation here–we simply re-
quire either symbol tables or a conservative data structure
extractor (Section 3). But other coverage issues occur re-
gardless of symbol table availability and must be curbed.

Stale Colors and Tags In Section 5.2, we showed that
lack of coverage could lead to the use of stale colors in
BA-objects mode. Again, the problem and its solution
are the same as for BA-fields mode.

Missed Masks and Context Checks Limited code
coverage may also causeBinArmor to miss theneedfor
masks and, unless prevented, lead to false positives. Con-
sider again the example custommemset function of Sec-
tion 6.2. The code is color blind, unaware of the under-
lying data structure, and accesses the memory according
to its own pattern. To prevent false positives, we intro-
ducedmasksthat filter out some shades to allow for be-
nign memory accesses.

Suppose that during analysis the custommemset func-
tion is invoked only once, to initialize an array of 4-byte
fields. No masks are necessary. Later, in a production
run, the program takes a previously unknown code path,
and uses the same function to access an array of 16-byte
structures. Since it did not assign masks to this function
originally, BinArmornow raises a (false) alarm.

To prevent the false alarm, we keep two versions of
each function in a program: a vanilla one, and an instru-
mented one which performs color checking. When the
program calls a function,BinArmor checks whether the
function call also occurred at the same point during the
analysis by examining the call stack. (In practice, we
take the top 3 function calls.) Then, it decides whether
or not to execute the instrumented version of the func-
tion. It performs color checking only for layouts of data
structures wehave seen before, so we do not encounter
code that accesses memory in an unexpected way.

[1] void
[2] foo(int *buf, int flag){
[3] if (flag != 2408)
[4] return;
[5]
[6] // custom memset
[7] while (cond){
[8] *buf = 0;
[9] buf++;
[10] }
[11] }

1. Analysis phase:
 (a) call foo((int*)array_of_structs, 1408);
 - the call stack gets accepted
 (b) call foo(int*, 2408);
 - the instruction in [8] is instrumented,
 yet without the need for a mask

2. Production run:
 call foo((int*)array_of_structs, 2408);
 - the call stack is accepted, so BA runs
 the instrumented version of the function
 - crash in [8] because we don't expect
 the need for a mask

Fig. 3: BA-fields mode: a scenario leading to false positives.

6.4 Are False Positives Still Possible?

While the extra mechanism to prevent false positives
based on context checks is effective in practice, it does
not give any strong guarantees. The problem is that a
call stack does not identify the execution context with
absolute precision. Fig. 3 shows a possible problematic
scenario. In this case, it should not be the call stack, but a
node in the program control flow graph which identifies
the context. Only if we saw the loop in lines [6-9] initial-
izing the array of structs , should we allow for an
instrumented version of it at runtime. Observe that the
scenario is fairly improbable. First, the offensive func-
tion must exhibit the need for masks, that is, it must ac-
cess subsequent memory locations through a pointer to a
previous field. Second, it needs to be called twice with
very particular sets of arguments before it can lead to the
awkward situation.

As we did not encounter false positives inanyof our
experiments, and BA-fields mode offers powerful, fine-
grained protection, we think that the risk may be accept-
able in application domains that can handle rare crashes.

7 Efficient Implementation

Protection by color matching combined with masks for
color blindness allowsBinArmor to protect data struc-
tures at a finer granularity than previous approaches.
Even so, the mechanisms are sufficiently simple to al-
low for efficient implementations.BinArmor is designed
to instrument 32-bit ELF binaries for the Linux/x86 plat-
forms. Like Pebil [21], it performs static instrumenta-
tion, i.e., it inserts additional code and data into an ex-
ecutable, and generates a new binary with permanent
modifications. We first describe howBinArmormodifies
the layout of a binary, and next present some details of
the instrumentation. (For a full explanation refer to [32].)

7.1 Updated Layout of ELF Binary

To accommodate new code and data required by the
instrumentation,BinArmor modifies the layout of an
ELF binary. The original data segment stays unaltered,

8

while we modify the text segment only in a minor way—
just to allow for the selection of the appropriate version
of a function (Section 6.3), and to assure that the result-
ing code works correctly—mainly by adjusting jump tar-
gets to reflect addresses in the updated code (refer to Sec-
tion 7.2). To provide protection,BinArmor inserts a few
additional segments in the binary: BAInitialized Data,
BA Uninitialized Data, BA Procedures, and BACode.

Both data segments–BA (Un)Initialized Data– store
data structures that are internally used byBinArmor,
e.g., data structures color maps, or arrays mapping ad-
dresses in the new version of a binary to the original
ones. TheBA Procedurescode segment contains var-
ious chunks of machine code used by instrumentation
snippets (e.g., a procedure that compares the color of a
pointer with the color of a memory location). Finally, the
BA Codesegment is the pivot of theBinArmorprotection
mechanism—it contains the original program’s functions
instrumented to perform color checking.

7.2 Instrumentation Code

To harden the binary, we rewrite it to add instrumenta-
tion to those instructions that dereference the array point-
ers. In BA-fields mode, we use multi-shade colors only
if the data structures are nested. When we can tell that a
variable is a string, or some other non-nested array, we
switch to a simpler, single-level color check.

To provide protection,BinArmor reorganizes code at
the instruction level. We do not need to know function
boundaries, as we instrument instructions which were
classified as array accesses, along with pointer move
or pointer initialization instructions, during the dynamic
analysis phase. We briefly describe the main steps taken
by BinArmor: (1) inserting trampolines and method se-
lector, (2) code relocation, (3) inserting instrumentation.

Inserting trampolines and method selector. The role
of a method selectoris to decide whether a vanilla or
an instrumented function should be executed (see Sec-
tion 6.3), and then jump to it. InBinArmor, we place
a trampolineat the beginning of each (dynamically de-
tected) function in the original text segment, which
jumps to the method selector. The selector picks the right
code to continue execution, as discussed previously.

Code relocation. BinArmor’s instrumentation frame-
work must be able to add an arbitrary amount of extra
code between any two instructions. In turn, targets of
all jump and call instructions in a binary need to be
adjusted to reflect new values of the corresponding ad-
dresses. As far as direct/relative jumps are concerned,
we simply calculate new target addresses, and modify

check whether tag value matches the pointer

cmp %edx, register_tag_edx

jne _dereference_check_end

[save %eax and %ebx used in instrumentation]

lea (%edx, %eax, 4), %ebx

call get_color_of_ebx ; loaded to %bx

mov register_color_edx, %ax

call color_match ; compare colors in %ax and %bx

cmpl $0, %eax ; check result

je _dereference_ok

["crash"]

[restore %eax and %ebx used in instrumentation]

movl $0x1234, (%edx, %eax, 4); execute original instr

_dereference_check_start:

_dereference_bad:

_dereference_ok:

_dereference_check_end:

Fig. 4: Instrumentation for an array pointer dereference
(with 16b colors and tags). The original instruction ismov
0x1234,(%edx,%eax,4) . We replace it by code similar
to that presented in the figure (but more efficient).

the instructions. Our solution to indirect jumps is simi-
lar to [31]: they are resolved at runtime, by using arrays
maintaining a mapping between old and new addresses.

Inserting instrumentation. Snippets come in many
shapes. For instance, snippets to handle pointer deref-
erences, to handle pointer move instructions, or to color
memory returned bymalloc . Some instructions require
that a snippet performs more than one action. For exam-
ple, an instruction which stores a pointer into an array,
needs to both store the color of the pointer in a color
map, and make sure that the store operation is legal. For
an efficient instrumentation, we have developed a large
number of carefully tailored snippets.

Colors map naturally on a sequence of small numbers.
For instance, each byte in a 32-bit or 64-bit word may
represent a shade, for a maximum nesting level of 4 or 8,
respectively. Doing so naively, incurs a substantial over-
head in memory space, but, just like in paging, we need
only allocate memory for color tags when needed. The
same memory optimization is often used in dynamic taint
analysis. In the implementation evaluated in Section 8,
we use 32 bit colors with four shades and 16 bit tags.

Fig. 4 shows an example of an array dereference in
the binary hardened byBinArmor. The code is simpli-
fied for brevity, but otherwise correct. We see that each
array dereference incurs some extra instructions. If the
colors do not match, the system crashes. Otherwise, the
dereference executes as intended. We stress that the real
implementation is more efficient. For instance, adding
two call instructions would be extremely expensive. In
reality, BinArmor uses code snippets tailored to perfor-
mance

9

8 Evaluation

We evaluateBinArmoron performance and on effective-
ness in stopping attacks. As the analysis engine is based
on the Qemu processor emulation, which is currently
only available on Linux, all examples are Linux-based.
However, the approach is not specific to any operating
system.

We have performed our analysis for binaries compiled
with two compiler versions,gcc-3.4 andgcc-4.4 , and
with different optimization levels. All results presented
in this section are for binaries compiled withgcc-4.4

-O2 and without symbols, i.e., completely stripped. We
reconstruct the symbols usingHoward [29].

Performance To evaluate the performance ofBin-
Armor operating in BA-fields mode4, we compare the
speed of instrumented (armored) binaries with that of
unmodified implementations. Our test platform is a
Linux 2.6 system with an Intel(R) Core(TM)2 Duo CPU
clocked at 2.4GHz with 3072KB L2 cache. The system
has 4GB of memory. For our experiments we used an
Ubuntu 10.10 install. We ran each test multiple times
and present the median. Across all experiments, the 90th
percentiles were typically within 10% and never more
than 20% off the mean.

We evaluate the performance ofBinArmor with a va-
riety of applications—all of the well-knownnbenchin-
teger benchmarks [1]—and a range of real-world pro-
grams. We picked thenbenchbenchmark suite, because
it is compute-intensive and several of the tests should
represent close to worst-case scenarios forBinArmor.

For the real-world applications, we chose a variety of
very different programs: a network server (lighttpd),
several network clients (wget , htget), and a more
compute-intensive task (gzip). Lighttpd is a high-
performance web server used by such popular sites as
YouTube, SourceForge, Wikimedia, Meebo, and TheP-
irateBay. Wget and htget are well-known command-
line web clients.Gzip implements the DEFLATE algo-
rithm which includes many array and integer operations.

Fig. 5 shows that for real I/O-intensive client-side ap-
plications likewget andhtget the slowdown is negli-
gible, whilegzip incurs a slow-down of approximately
1.7x. As gzip is a very expensive test forBinArmor,
the slow-down was less than we expected. The over-
head for a production-grade web server likelighttpd

is also low: less than 2.8x for all object sizes, and as lit-
tle as 16% for large objects. In networking applications
I/O dominates the performance and the overhead ofBin-
Armor is less important.

Fig. 6 shows the results for the very compute-intensive

4The reason is that BA-fields mode is the most fine-grained, al-
though in practice, the performance of BA-objects mode is verysimilar.

 0

 1

 2

 3

1K 10K 100K 1M 10M gzip
(1.6M)

gzip
(6.8M)

gzip
(67M)

htget wget

sl
ow

do
w

n

lighttpd (any size)

Native BinArmor

Fig. 5: Performance overhead for real world applications:
lighttpd – for 5 object sizes (in connections/s as measured by
httperf), gzip– for 3 object sizes,htgetandwget.

 0

 1

 2

 3

 4

 5

 6

lu
decomp

neural
net

huffman idea assign fourier bitfield string
sort

integer
sort

sl
ow

do
w

n

Native BinArmor

Fig. 6: Performance overhead for the compute-intensive
nbenchbenchmark suite.

nbenchtest suite. The overall slowdown for nbench is
2.9x. Since this benchmark suite was chosen as worst-
case scenario and we have not yet fully optimizedBin-
Armor, these results are quite good. Some of the tests
incurred a fairly minimal slow-down. Presumably, these
benchmarks are dominated by operations other than ar-
ray accesses. String sort and integer sort, on the other
hand, manipulate strings and arrays constantly and thus
incur much higher slowdowns. They really represent the
worst cases forBinArmor.

Effectiveness Table 1 shows the effectiveness ofBin-
Armor in detecting attacks on a range of real-life soft-
ware vulnerabilities. Specifically, these attacks represent
all vulnerabilities on Linux programs for which we found
working exploits.BinArmoroperating in either mode de-
tected all attacks we tried and did not generate any false
positives during any of our experiments. The attacks de-
tected vary in nature and include overflows on both heap
and stack, local and remote, and of both control and non-
control data.

The detection of attacks on non-control data is espe-
cially encouraging. While control flow diversions would
trigger alerts also on taint analysis systems like Ar-
gos [25] and Minemu [8], to the best of our knowledge,
no other security measure for stripped binaries would
be able to detect such attacks. As mentioned earlier,
security experts expect non-control data attacks to be-
come even more important attack vectors in the near fu-
ture [12, 30].

10

Application Vulnerability type Security advisory

Aeon 0.2a Stack overflow CVE-2005-1019
Aspell 0.50.5 Stack overflow CVE-2004-0548
Htget 0.93 (1) Stack overflow CVE-2004-0852
Htget 0.93 (2) Stack overflow
Iwconfig v.26 Stack overflow CVE-2003-0947
Ncompress 4.2.4 Stack overflow CVE-2001-1413
Proftpd 1.3.3a Stack overflow CVE-2010-4221
bc-1.06 (1) Heap overflow Bugbench [22]
bc-1.06 (2) Heap overflow Bugbench [22]
Exim 4.41 Heap overflow∗ CVE-2010-4344
Nullhttpd-0.5.1 Heap overflow† CVE-2002-1496
Squid-2.3 Heap overflow† Bugbench [22]

∗ A non-control-diverting attack.† A reproduced attack.

Table 1: Tested vulnerabilities:all attacks were stopped by
BinArmor, including the attack on non-control data.

9 Related Work

The easiest way to prevent memory corruptions is to do
so at the source level, using a safe language or compiler
extension. However, as access to source code or recom-
pilation is often not an option, many binaries are left un-
protected. Our work is about protecting binaries. Since it
was inspired by the WIT compiler extension, we briefly
look at compile time solutions also.

Protection at compile time Managed languages like
Java and C# are safe from buffer overflows by design.
Cyclone [20] and CCured [14] show that similar pro-
tection also fits dialects of C—although the overhead is
not always negligible. Better still, data flow integrity
(DFI) [10], write integrity testing (WIT) [3], and baggy
bounds checking (BBC) [4] are powerful protection ap-
proaches against memory corruptions for unmodified C.

BinArmor was inspired by the WIT compiler
extension—a defense framework that marries immedi-
ate (fail-stop) detection of memory corruption to excel-
lent performance. WIT assigns a color to each object
in memory and to each write instruction in the program,
so that the color of memory always matches the color
of an instruction writing it. Thus all buffers which can
be potentially accessed by the same instruction share the
same color. WIT employs points-to analysis to find the
set of objects written by each instruction. If several ob-
jects share the same color, WIT might fail to detect at-
tacks that use a pointer to one object to write to the other.
To get a grasp of the precision, we implemented points-
to analysis ourselves, and applied it to global arrays in
gzip-1.4 . Out of 270 buffers, 124 have a unique color,
and there are two big sets of objects that need to share it:
containing 64 and 68 elements. (We assume that we pro-
vide templates for thelibc functions. Otherwise, the

precision is worse.) To deal with these problems, WIT
additionally inserts small guards between objects, which
cannot be written by any instruction. They provide an
extra protection against sequential buffer overflows.Bin-
Armor tracks colors of objects dynamically, so each array
is assigned a unique color.

Also, WIT and BBC protect at the granularity of mem-
ory allocations. If a program allocates a structure that
contains an array as well as other fields, overflows within
the structure go unnoticed. As a result, the attack surface
for memory attacks is still huge. SoftBound is one of the
first tools to protect subfields in C structures [23]. Again,
SoftBound requires access to source code.

BinArmor’s protection resembles that of WIT, but
without requiring source code, debugging information,
or even symbol tables. Unlike WIT, it protects at the
granularity of subfields in Cstruct s. It prevents not
just out-of-bounds writes, as WIT does, but also reads.
As a drawback,BinArmor may be less accurate, since
dynamic analysis may not cover the entire program.

Protection of binaries Arguably some of the most
popular measures to protect against memory corruption
are memory debuggers like Purify and Valgrind [24].
These powerful testing tools are capable of finding many
memory errors without source code. However, they incur
overheads of an order of magnitude or more. Moreover,
their accuracy depends largely on the presence of debug
information and symbol tables. In contrast,BinArmor is
much faster and requires neither.

One of the most advanced approaches to binary pro-
tection is XFI [19]. Like memory debuggers, XFI re-
quires symbol tables. Unlike memory debuggers, DTA,
or BinArmor, XFI’s main purpose is to protect host soft-
ware that loads modules (drivers in the kernel, OS pro-
cesses, or browser modules) and it requires explicit sup-
port from the hosting software–to grant the modules ac-
cess to a slice of the address space. It offers protection
by a combination of control flow integrity, stack split-
ting, and memory access guards. Memory protection is
at the granularity of the module, and for some instruc-
tions, the function frame. The memory guards will miss
most overflows that modify non-control data.

An important class of approaches to detect theeffects
of memory corruption attacks is based on dynamic taint
analysis (DTA) [15]. DTA does not detect the memory
corruption itself, but may detect malicious control flow
transfers. Unfortunately, the control flow transfer occurs
at a (often much) later stage. With typical slowdowns of
an order of magnitude, DTA in software is also simply
too expensivefor production systems.

Non-control data attacks are much harder to stop [12].
[11] pioneered an interesting form of DTA to detect some
of these attacks: pointers become tainted if their values

11

are influenced by user input, and an alert is raised if a
tainted value is dereferenced. However, pointer taint-
edness for detecting non-control data attacks is shown
to be impractical for complex architectures like the x86
and popular operating systems [28]. The problems range
from handling table lookups to implicit flows and result
in false positives and negatives. Moreover, by defini-
tion, pointer taintedness cannot detect attacks that do not
dereference a tainted pointer, such as an attack that would
overwrite theprivileged field in Fig. (2a).

10 Discussion

Obviously,BinArmor is not flawless. In this section, we
discuss some generic limitations.

With a dynamic approach,BinArmorprotects only ar-
rays detected by Howard. If the attackers overflow other
arrays, we will miss the attacks. Also, if particular ar-
ray accesses are not exercised in the analysis phase, the
corresponding instructions are not instrumented either.
Combined with the tags (Section 5.2), this lack of accu-
racy can only cause false negatives, but never false posi-
tives. In practice, as we have seen in Section 8,BinArmor
was able to protect all vulnerable programs we tried.

Howard itself is designed to err on the safe side.
In case of doubt, it overestimates the size of an array.
Again, this can lead to false negatives, but not false pos-
itives. However, if the code is strongly obfuscated or de-
liberately designed to confuse Howard, we do not guar-
antee that it will never misclassify a data structure in
such a way that it will cause a false positive. Still, it
is unlikely, because to do so, the behavior during analy-
sis should also be significantly different from that during
the production run. In our view, the risk is acceptable for
software deployments that can tolerate rare crashes.

We have implemented two versions ofBinArmor: BA-
objects mode, and BA-fields mode. While the latter pro-
tects memory at a fine-grained granularity, there exist
theoretical situations that can lead to false alerts. How-
ever, in practice we did not encounter any problems.
Since the protection offered is very attractive —Bin-
Armor protects individual fields within structures — we
again think that the risk is acceptable.

Code coverage is a limitation of all dynamic analy-
sis techniques and we do not claim any contribution to
this field. Interestingly, code coverage can also be ‘too
good’. For instance, if we were to trigger a buffer over-
flow during the analysis run,BinArmorwould interpret it
as normal code behavior and not prevent similar overruns
during production. Since coverage techniques to handle
complex applications are currently still fledgling, this is
mostly an academic problem. At any rate, if binary code
coverage techniques are so good as to find such real prob-
lems in the testing phase, this can only be beneficial for

the quality of software.

11 Future work

BinArmor’s two main problems are accuracy (in terms of
false negatives and false positives) and performance (in
terms of the slowdown of the rewritten binary). In this
section, we discuss ways to address these problems.

First, the root cause ofBinArmor’s false negative and
false positive problems is the lack of code coverage. Our
next target, therefore, is to extend the paths covered dy-
namically by means of static analysis. For instance, we
can statically analyze the full control flow graphs of all
functions called at runtime. Static analysis in general is
quite hard, due to indirect calls and jumps, but within a
single function indirect jumps are often tractable (they
are typically the result ofswitch statements that are rel-
atively easy to handle).

Second, the cause ofBinArmor’s slowdown is the in-
strumentation that adds overhead to every access to an
array thatBinArmor discovered. We can decrease the
overhead using techniques that are similar to those ap-
plied in WIT. For instance, there is no need to perform
checks on instructions which calculate the address to be
dereferenced in a deterministic way, say at offset 0x10
from a base pointer. Thus, our next step is to analyze the
instructions that are candidates for instrumentation and
determine whether the instrumentation is strictly needed.

12 Conclusions

We described a novel approach to harden binary software
proactively against buffer overflows, without access to
source or symbol tables. Besides attacks that divert the
control flow, we also detect attacks against non-control
data. Further, we demonstrated that our approach stops
a variety of real exploits. Finally, as long as we are con-
servative in classifying data structures in the binaries,
our method will not have false positives. On the down-
side, the overhead of our approach in its current form is
quite high—making it unsuitable for many application
domains today. However, we also showed that signifi-
cant performance optimizations may still be possible. It
is our view that protection at the binary level is important
for dealing with real threats to real and deployed infor-
mation systems.

Acknowledgements

This work is supported by the European Research Coun-
cil through project ERC-2010-StG 259108-ROSETTA
and the EU FP7 SysSec Network of Excellence. The au-
thors are grateful to David Brumley and his team for pro-

12

viding us with several local exploits, and to Erik Bosman
and Philip Homburg for their work on the Exim exploit.

References

[1] BYTE Magazine nbench benchmark.
http://www.tux.org/ ˜ mayer/linux/bmark.html .

[2] A BADI , M., BUDIU , M., ERLINGSSON, U., AND L IGATTI , J.
Control-Flow Integrity. InProceedings of CCS(2005).

[3] A KRITIDIS , P., CADAR , C., RAICIU , C., COSTA, M., AND

CASTRO, M. Preventing memory error exploits with WIT. In
Proc. of the IEEE Symposium on Security and Privacy, S&P’08.

[4] A KRITIDIS , P., COSTA, M., CASTRO, M., AND HAND ,
S. Baggy Bounds Checking: An efficient and backwards-
compatible defense against out-of-bounds errors. InProceedings
of the 18th Usenix Security Symposium(2009), USENIX-SS’09.

[5] AVOTS, D., DALTON , M., L IVSHITS, V. B., AND LAM , M. S.
Improving software security with a C pointer analysis. InProc.
of the 27th Intern. Conf. on Software Engineering (ICSE)(2005).

[6] BELLARD , F. QEMU, a fast and portable dynamic translator. In
USENIX 2005 Annual Technical Conference, ATEC ’05.

[7] BHATKAR , S., DUVARNEY, D. C., AND SEKAR, R. Address
obfuscation: an efficient approach to combat a board range of
memory error exploits. InProc. of USENIX-SS(2003).

[8] BOSMAN, E., SLOWINSKA , A., AND BOS, H. Minemu: The
Worlds Fastest Taint Tracker. InProceedings of 14th Interna-
tional Symposium on Recent Advances in Intrusion Detection
(2011), RAID 2011.

[9] CADAR , C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and automatic generation of high-coverage tests for complex sys-
tems programs. InProc. of OSDI(2008).

[10] CASTRO, M., COSTA, M., AND HARRIS, T. Securing software
by enforcing data-flow integrity. InProc. of OSDI(2006).

[11] CHEN, S., XU, J., NAKKA , N., KALBARCZYK , Z., AND IYER,
R. K. Defeating memory corruption attacks via pointer tainted-
ness detection. InProc. of DSN(2005).

[12] CHEN, S., XU, J., SEZER, E. C., GAURIAR , P., AND IYER,
R. K. Non-control-data attacks are realistic threats. InProc. of
14th USENIX Security Symposium(2005), SSYM’05.

[13] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA , G. S2E: A
platform for in vivo multi-path analysis of software systems.In
Proc. of ASPLOS(2011).

[14] CONDIT, J., HARREN, M., MCPEAK , S., NECULA, G. C.,AND

WEIMER, W. CCured in the real world. InProc. of POPL(2003).

[15] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.,
ZHOU, L., ZHANG, L., AND BARHAM , P. Vigilante: end-to-end
containment of internet worms. InProc. of SOSP(2005).

[16] COWAN, C., PU, C., MAIER, D., HINTONY, H., WALPOLE, J.,
BAKKE , P., BEATTIE, S., GRIER, A., WAGLE, P.,AND ZHANG,
Q. StackGuard: Automatic Adaptive Detection and Preventionof
Buffer-Overflow Attacks. InProc. of USENIX-SS(1998).

[17] CWE/SANS. TOP 25 Most Dangerous Software Errors.
www.sans.org/top25-software-errors , 2011.

[18] ELIAS LEVY (ALEPH ONE). Smashing the stack for fun and
profit. Phrack 7, 49 (1996).

[19] ERLINGSSON, U., VALLEY, S., ABADI , M., VRABLE, M.,
BUDIU , M., AND NECULA, G. C. XFI: software guards for
system address spaces. InProc. of OSDI(2006).

[20] JIM , T., MORRISETT, G., GROSSMAN, D., HICKS, M., CH-
ENEY, J., AND WANG, Y. Cyclone: A safe dialect of C. In
USENIX 2002 Annual Technical Conference, ATEC ’02.

[21] LAURENZANO, M., TIKIR , M. M., CARRINGTON, L., AND

SNAVELY, A. PEBIL: Efficient static binary instrumentation for
Linux. In Proc. of ISPASS(2010).

[22] LU, S., LI , Z., QIN , F., TAN , L., ZHOU, P., AND ZHOU, Y.
Bugbench: Benchmarks for evaluating bug detection tools. In
Workshop on the Evaluation of Software Defect Detection Tools
(2005).

[23] NAGARAKATTE , S., ZHAO, J., MARTIN , M. M., AND

ZDANCEWIC, S. SoftBound: highly compatible and complete
spatial memory safety for C. InProc. of PLDI’09.

[24] NETHERCOTE, N., AND SEWARD, J. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. InProc. of
the 3rd Intern. Conf. on Virtual Execution Environ.(2007), VEE.

[25] PORTOKALIDIS, G., SLOWINSKA , A., AND BOS, H. Argos:
an Emulator for Fingerprinting Zero-Day Attacks. InProceed-
ings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006(2006), EuroSys ’06.

[26] REPS, T., AND BALAKRISHNAN , G. Improved memory-access
analysis for x87 executables. InProc. of ETAPS(2008).

[27] SLOWINSKA , A., AND BOS, H. The Age of Data: Pinpointing
Guilty Bytes in Polymorphic Buffer Overflows on Heap or Stack.
In Proc. of ACSAC(2007).

[28] SLOWINSKA , A., AND BOS, H. Pointless tainting?: evaluating
the practicality of pointer tainting. InProc. of EuroSys(2009).

[29] SLOWINSKA , A., STANCESCU, T., AND BOS, H. Howard: a dy-
namic excavator for reverse engineering data structures. InPro-
ceedings of NDSS(2011).

[30] SOTIROV, A. Modern exploitation and memory pro-
tection bypasses. USENIX Security invited talk,
www.usenix.org/events/sec09/tech/slides/sotirov.pdf ,
August 2009.

[31] SRIDHAR, S., SHAPIRO, J. S.,AND NORTHUP, E. HDTrans: An
open source, low-level dynamic instrumentation system. InProc.
of the 2nd Intern. Conf. on Virtual Execution Environ.(2006).

[32] STANCESCU, T. BodyArmor: Adding Data Protection to Binary
Executables. Master’s thesis, VU Amsterdam, 2011.

[33] TEAM , P. Design and implementation of PAGEEXEC.
http://pax.grsecurity.net/docs/pageexec.old.txt ,
November 2000.

13

http://www.tux.org/~mayer/linux/bmark.html
www.sans.org/top25-software-errors
www.usenix.org/events/sec09/tech/slides/sotirov.pdf
http://pax.grsecurity.net/docs/pageexec.old.txt

	Introduction
	Some buffer overflows are hard to stop: the Exim attack on non-control data
	What to Protect: Buffer Accesses
	Extracting Buffers and Data Structures
	Instructions to be Instrumented

	Code Coverage and Modes of Operation
	BA-objects mode: Object-level Protection
	What is Permissible? What is not?
	Protection by Color Matching
	Expect the Unexpected Paths

	BA-fields mode: a Colorful Armor
	What is Permissible? What is not?
	Shaded Colors
	Why We do Not See False Positives
	Are False Positives Still Possible?

	Efficient Implementation
	Updated Layout of ELF Binary
	Instrumentation Code

	Evaluation
	Related Work
	Discussion
	Future work
	Conclusions

