Body armor for binaries: preventing buffer overflows without recompilation

Asia Slowinska Traian Stancescu Herbert Bos
Vrije Universiteit Amsterdam Google, Inc. Vrije Universiteit Amsterdam
Abstract tacks, current binary instrumentation systems detect only

the manifestationsof attacks, rather than the attacks

BinArmor is a novel technique to protect existin ; .
d P 9 themselves. For instance, they detect a control flow di-

C binaries from memory corruption attacks on both ion thaieventuall Its 1 the buff ﬂ
control data and non-control data. Without access tq c >0 haEventuaiiyresults from the bulier overtiow,

source code, non-control data attacks cannot be detect o) t not the actual overflow itself, which may have oc-
with current techniques. Our approach hardens binariegurred thousands of cycles.beforcla. The lag bgtween time-
against both kinds of overflow, without requiring the pro- of-attack and tlme—of—m_anlfestatlon makes it harder to
grams’ source or symbol tables. We show tBatArmor analyz_e the attack and f|n_d the root cause [27].
is able to stop real attacks—including the recent non- In this paper, we descn_meArmor, a tool to bolt a
control data attack on Exim. Moreover, we did not in- |2Yer Of protection on C binaries that stops state-of-the-
cur a single false positive in practice. On the downside,art buffer overflows immediately (as soon as they occur).
the current overhead &inArmoris high—although no
worse than competing technologies like taint analysisHigh level overview Rather than patching systems af-
that do not catch attacks on non-control data. Specifiter a vulnerability is foundBinArmor is proactive and
cally, we measured an overhead of 70%doip , 16%- Stops buffer (array) overflows in binary software, before
180% forlighttpd , and 190% for the@bench suite. we even know it is vulnerable. Whenever it detects an at-
tack, it will raise an alarm and abort the execution. Thus,
like most protection schemes, we assume that the system
1 Introduction can tolerate rare crashes. FinaBinArmor operates in
one of two modes. [BA-fields modewe protect indi-
Despite modern security mechanisms like stack protecyidual fields inside structures. BA-objects modewe
tion [16], ASLR [7], and PaX/DEP/W¥X [33], buffer protect at the coarser granularity of full objects.
overflows rank third in the CWE SANS top 25 mostdan- BinArmorrelies on limited information about the pro-
gerous software errors [17]. The reason is that attackergram’s data structures—specifically the buffers that it
adapt their techniques to circumvent our defenses. should protect from overflowing. If the program’s sym-
Non-control data attacks, such as the well-known athol tables are availableBinArmor is able to protect
tacks oneximmail servers (Section 2), are perhaps mostthe binary against buffer overflows with great precision.
worrying [12, 30]. Attacks on non-control data are hard Moreover, in BA-objects mode no false positives are pos-
to stop, because they do not divert the control flow, dosible in this case. While we cannot guarantee this in BA-
not execute code injected by the attacker, and often exfields mode, we did not encounter any false positives in
hibit program behaviors (e.g., in terms of system call patpractice, and as we will discuss later, they are unlikely.
terns) that may well be legitimate. Worse, for binaries, However, while researchers in security projects fre-
we do not have the means to detect themall. quently assume the availability of symbol tables [19], in
Current defenses against non-control data attacks afiractice, software vendors often strip their code of all de-
require access to the source code [20, 3, 4]. In contrashug symbols. In that case, we show that we can use auto-
security measures at the binary level can stop variousnated reverse engineering techniques to extract symbols
control-flow diversions [15, 2, 19], but offer no protec- from stripped binaries, and that this is enough to pro-
tion against corruption of non-control data. tect real-world applications against real world-attacks.
Even for more traditional control-flow diverting at- To our knowledge, we are the first to use data structure

= 1N it S Bointer that Compared to techniques like taint analysis that also
H/ — first pointed . targetbinaries BinArmor detects both control flow and
i | later accesses non-control flow attackswhereas taint analysis detects
/ Ehened outside only the former. Also, it detects attack®imediately
H [:E [—E when they occur, rather than sometime later, when a
Find arrays | Find accesses | Rewrite the binary: oxed chrasha function p(:)mter is used. . . o
in binaries. | to arrays. - 3ssign colours to arrays The main drawback oBinArmor is the very signif-

(0 (i) RS S icant slowdown (up to 2.8x for the lighttpd webserver
and 1.7x for gzip). While better than most tainting sys-
tems (which typically incur 3x-20x), it is much slower
than WIT (1.04x for gzip). Realistically, such slow-
downs makeaBinArmorin its current form unsuitable for
recovery to prevent memory corruption. We believe theany system that requires high performance. On the other
approach is promising and may also benefit other syshand, it may be used in application domains where se-
tems, like XFI [19] and memory debuggers [24]. curity rather than performance is of prime importance.
BinArmorhardens C binaries in three steps (Fig. 1): In addition, becausBinArmor detects buffer overflows
themselves rather than their manifestations, we expect it
to be immediately useful for security experts analyzing
attacks. Finally, we will show later that we have not ex-
(i) Array access discoverydynamically find poten- plored all opportunities for performance optimization.
tially unsafe pointer accesses to these buffers. Our work builds on dynamic analysis, and thus suffers
) .] } from the limitations of all dynamic approaches: we can
(iif) Rewrite: statically rewrite the binary to ensure that only protect what we execute during the analysis. This
a pointer accessing a buffer stays within its bounds,,,qrk is not about code coverage. We rely on existing

Data structure discovery is easy when symbol tabledools and test suites to cover as much of the binary as
are available, but very hard when they are not. In thePossible. Since coverage is never perfect, we may miss
absence of symbol tableBinArmoruses recent research buffer accesses and thus incur false negatives. Despite
results [29] to reverse engineer the data structures (anWis,BinArmordetected all 12 real-world buffer overflow
especially the buffers) from the binary itself by analyzing attacks in real-world applicationse study(Section 8).
memory access patterns (Fig. 1, step i). Something is a BINArmor takes a conservative approach to prevent
struct, if it is accessed like a struct, and an array, if itfalse positives (unnecessary program crashes). For in-
is accessed like an array. And so on. Next, given theéStance, no false positives are possible when the protec-
symbols,BinArmor dynamically detects buffer accesses tion is limited to structures (BA-objects mode). In BA-
(step ii). Finally, in the rewrite stage (step iii), it takes fields mode, we can devise scenarios that lead to false
the data structures and the accesses to the buffers, aR@sitives due to the limited code coverage. However, we
assigns to each buffer a unique color. Every pointer usedid not encounter any in practice, and we will show that
to access the buffer for the first time obtains the colorthey are very unlikely.

of this buffer. BinArmor raises an alert whenever, say, a Since our dynamic analysis builds on Qemu [6] pro-
blue pointer accesses a red byte cess emulation which is Only available for LanX, we tar-

get x86 Linux binaries, generated byc (albeit of var-
ious versions and with different levels of optimization).
(However, there is nothing fundamental about this and the
techniques should apply to other systems also.

Fig. 1: BinArmoroverview.

(i) Data structure discoverydynamically extract the
data structures (buffers) that need protection.

Contributions BinArmor proactively protects existing
C binaries, before we even know whether the code is vu
nerable, against attacks on control datel non-control
data, and it can do so either at object or sub-field gran-

ularity. Compared to source-level protection like WIT, 2 Some buffer overflows are hard to stop:

BinArmor has the advantage that it requiresaccess to the Exim attack on non-control data
source code or the original symbol tablek addition,
in BA-fields mode, byprotecting individual fieldsn- In December 2010, Sergey Kononenko posted a message

side a structure rather than aggregaBesArmoris finer- ~ on theeximdevelopers mailing list about an attack on the
grained than WIT and similar solutions. Also, it prevents eximmail server. The news was slashdotted shortly af-
overflows on both writeand reads, while WIT protects ter. The remote root vulnerability in question concerns a
only writes and permits information leakage. Further, weheap overflow that causes adjacent heap variables to be
show in Section 9 that points-to analysis (a technique reeverwritten, for instance an access control list (ACL) for
lied on by WIT), is frequently imprecise. the sender of an e-mail message. A compromised ACL

is bad enough, but ieximthe situation is even worse. Its as possible and observes the memory accesses. To de-
powerful ACL language can invoke arbitrary Unix pro- tect arrays, it first detects loops and then treats a memory
cesses, giving attackers full control over the machine. area as an array if (1) the program accesses the area in
The attack is a typical heap overflow, but what makesa loop (either consecutively, or via arbitrary offsets from
it hard to detect is that it does not divert the program’sthe array base), and (2) all accesses ‘look like’ array ac-
control flow at all. It only overwrites non-control data. cesses (e.g., fixed-size elements). Moreover, it takes into
ASLR, WoX, canaries, system call analysis—all fail to account array accesses outside the loop (including ‘first’
stop or even detect the attack. and ‘last’ elements), and handles a variety of complica-
Both ‘classic’ buffer overflows [18], and attacks on tions and optimizations (like loop unrolling).
non-control data [12] are now mainstream. While attack- Since arrays are detected dynamically, we should not
ers still actively use the former (circumventing existing underestimate the size of arrays, lest we incur false posi-
measures), there is simpho practical defense against tives. If the array is classified as too small, we might de-
the latter in binaries. Thus, researchers single out nontect an overflow when there is none.Howard, the data
control data attacks as a serious future threat [Bdh- structure extraction is deliberately conservative, sa tha
Armor protects against both types of overflows. in practice the size of arrays is either classified exactly
right, or overestimated (which never leads to false posi-
tives). The reason is that it conservatively extends arrays
towards the next variable below or abowaward is very

BinArmor protects binaries by instrumenting buffer ac uniikely to underestimate the array size for compiler-
P y 9 enerated code and we never encountered it in any of our
cesses to make sure they are safe from overflows;

Throuahout the papes. bufferis an array that can poten- ests, although there is no hard guarantee that we never
) 9 Papea. y Can poten- - a1 - Size underestimation is possible, but can happen
tially overflow. Fig. 1 illustrates the general idea, which

i< intuitively simple- once the proaram has assianed anonly if the program accesses the array with multiple base
y pie: prog Y ointers, and behaves consistently and radically differen

array to a pointer, it should not use the same pointer to acﬁ] all analysis runs from the production run.

cess elements beyond the array bounds. For this purpose, L
y y purP Over a range of applications, Howard never underes-

BinArmorassigns colors to arrays and pointers and veri- . o o o
fies that the colors of memory and pointer match on eacﬁ'mated an array's size and classified well over 80% of

access. After statically rewriting the binary, the resgti all arrays on the executed paths ‘exactly right o—down to

code runs natively and incurs overhead only for the in—the last byte. Thesg arrays represent. over 90% of "’.Il.l ar
structions that access arrays. In this section, we explaiFf"‘y bytes. Al remaining arrays are e't.h er not classified
how we obtain buffers and accesses to them when Syme_lt all or overestimated and thus safe with respect to false

bols are not available, while Sections 5-7 discuss hOV\POS't'VeS‘) ,
we use this information to implement fine-grained pro- We stressed earlier theibward aims to err on the safe

tection against buffer overflows. side_,_by overestimatin_g th_e size of arrays to prevent fqlse
positives. The question is what the costs are of doing
so. Specifically, one may expect an increase in false neg-
atives. While true in theory, this is hardly an issue in
Ideally, BinArmor obtains information about buffers practice. The reason is thBinArmoronly misses buffer
from the symbol tables. Many projects assume the availoverflows that (1) overwrite values immediately follow-
ability of symbol tables [19, 24]. Indeed, if the binary ing the real array (no byte beyond the (over-)estimation
does come with symbol&inArmor offers very accurate of the array is vulnerablend (2) that overwrite a value
protection. However, as symbols are frequently strippedhat the program did not use separately during the dy-
off in real software, it uses automated reverse engineemamic analysis of the program (otherwise, we would not
ing techniques to extract them from the binargin- have classified it as part of the array). Exploitable over-
Armor uses a dynamic approach, as static approaches afows that satisfy both conditions are rare. For instance,
weak at recovering arrays, but, in principle, they workan overflow of a return value would never qualify, as
also [26]. the program always uses the return address separately.
Specifically, we recover arrays usirgpward [29], Overall, not a single vulnerability in Linux programs for
which follows the simple intuition that memory access which we could find an exploit qualified.
patterns reveal much about the layout of data structures. One final remark about array extraction and false pos-
In this paper, we sketch only the general idea and reitives; as mentioned earlieBinArmor does not care
fer to the originalHoward paper for details [29]. Using which method is used to extract arrays and static extrac-
binary code coverage techniques [13, 9], Howard exetors may be used just as well. However, this is not en-
cutes as many of the execution paths through the binartirely true. Not underestimating array sizes is crucial.

3 What to Protect: Buffer Accesses

3.1 Extracting Buffers and Data Structures

We consider the problem of finding correct buffer sizesassigns a color to each buffen stack, heap, or in global
orthogonal to the binary protection mechanism offeredmemory. Then it makes sure that a pointer to an object of
by BinArmor. Whenever we discuss false positives in color X never accesses memory of color Y. This way we
BinArmor, we always assume that the sizes of buffers araletect all buffer overflows that aim to overwrite another
not underestimated object in memory.

3.2 Instructions to be Instrumented 5.1 What is Permissible? What is not?

WhenBinArmor detects buffers to be protected, itdy- Figs. (2.a-2.b) show a function with some local vari-
namically determines the instructions (array accesseshbles, and Fig. (2.c) shows their memory layout and col-
that need instrumenting. The process is straightforwardors. In BA-objects mode, we permit memory accesses
for each buffer, it dumps all instructions that access it. within objects, such as the two tick-marked accesses in

Besides accesseBinArmor also dumps all instruc- Fig. (2.c). In the first case, the program perhaps iterates
tions that initialize or manipulate pointers that access arover the elements in the array (at offsets 4, 12, and 20
rays. in the object), and dereferences a pointer to the sec-

ond element (offset 12) by addirsigeof(pair t) to

4 Code Coverage and Modes of Operation .the array’s base.p.omter at o_ffset 4. In the secqnd case,
it accesses therivileged field of mystruct via a

Since BinArmor is based on dynamic analysis, it suf- POINter to the last element of the array (offset 24). Al-
fers from coverage issues—we can only analyze whaf10ugh the program accesses a field beyond the array,
we execute. Even the most advanced code coveradbremains within the local variableystruct , and (like
tools [9, 13] cover just a limited part of real programs. IT and other projects), we allow such operations in this
Lack of coverage causeé&inArmor to miss arrays and Mode. Such access patterns commonly occur, €.g., when
array accesses and thus incur false negatives. Even sgmemset() -like function initializes the entire object.

BinArmor proved powerful enough to deteall attacks However,BinArmorstops the program from accessing
we tried (Section 8). What we really want to avoid are thelen andp fields through a pointer into the structure.
false positives: crashes on benign input. len ,p andmystruct are separate variables on the stack,

In BinArmor, we instrument only those instructions and one cannot be accessed through a pointer to the other.
that we encountered during the analysis phase. Howevef,nus; BInArmor in BA-objects mode stops inter-object
a program path executed at runtimpe, may differ from Puffer overflow attacks, but not intra-object ones.
all paths we have seen during analydis{p, }.c4, and
yet pr might share parts with (some of) them. Thus, an5.2 Protection by Color Matching
arbitrary subset of array accesses and pointer manipula- gj, Armoruses colors to enforce protection. It assigns
tions onpp, is instrumented, and as we instrument ex-¢q 45 to each word of a bufferwhen the program al-

actly those instructions that belong to pathg i fac 4. |ocates memory for it in global, heap, or stack memory.
it may well happen that we miss a pointer copy, a pointerg 5, complete object gets one unique color. All memory

initialization, or a pointer dereference instruction. which we do not protect gets a unique background color.

With that in _mind, we should limit the co_lor checks When the program assigns a buffer of color X to a
performed byBinArmorto program paths which use ar- pointer,BinArmorassociates the same color with the reg-

ray pointers in ways also seen during analysis. - Intujge, containing the pointer. The color does not change

itively,_ the more scrupulou§ and fine-grained the CO',Orwhen the pointer value is manipulated (e.g., when the
checking policy, the more tightly we need to constralnprogram adds an offset to the pointer), but it is copied

p:jcgectedhprogrgm f?aths t(f)f the orm;jn be_ff(])re TO \when the pointer is copied to a new register. When the
address this tradeoff, we offer two modesBINAIMOr ,qinter s stored to memory, we also store its color to a

which impose d|ffere_nt requirements for the selecthn Ofmemory map, to load it later when the pointer is restored.
program paths to be instrumented, and offer protection at From now onBinArmor vets each dereference of the
different granularities: coarse-grain8#-objectsmode

ointer to see ifitis still in bounds. Vetting pointer deref
(Section 5), and fine-graind®A-fieldsmode (Section 6). P gp

erences is a matter of checking whether the color of the
pointer matches that of the memory to which it points.
5 BA-objects modeObject-level Protection

Stale Colors and Measures to Rule out False Positives

Just like other popular approaches, e.g., WIT [3] andp e tq |ack of coverage, a program path at runtime may
BBC [4], BA-objects mode provides protection at the

level of objects used by a program. To do BmArmor 1Or a struct containing the array as this mode operates ontsbjec

typedef struct pair { BA-ObJeCtS mode BA-fields mode
int x; int y;
} pair_t;
struct s { N o
int age; "' P 28 .\9’6 P 26
pair_t buf[3]; / ¥ 0\'«\’3\\ 9
int privileged; | 24 t)\ﬂ.\\\K 24
} mystruct; x x 20 2
(a) Data structures. A\ x_ v
\ 16 a‘;(b' 1€
Neay
/* initialize the buffer */ X 12 \x&\“(\,&«;ﬁe b 12
int *p; y N6 |
int len = 3; // buf length 8 2™ XX |
buf |buflog x |, « ouf o8O K |,
for(p = (int*)mystruct.buf;
p < mystruct.buf+len; p++) age age
*p - Q;
CO Cl CZ C3 Co C1 Cz C3
(b) Init code. (c) Color tags. (d) Color tags. (e) The masks shield all

shades except the first two.

Fig. 2: BinArmorcolors in BA-objects mode (c) and BA-fields modes (d,e) for samptie stauctures (a) and code (b).

lack instrumentation on some pointer manipulation in-accessing object X though a pointer to object Y. Even
structions. This may lead to the use détalecolor. though programs in C are not expected to do so, some
Consider a function likenemcpy(src,dsty . Sup- functions exhibit “color blindness”, and directly use a
pose thaBinArmor misses thalst buffer during anal- pointer to one object to access another object. The
ysis (it was never used), so that it (erroneously) does nostrcat() and __strcpy _chk() functions in current
instrument the instructions manipulating e pointer libc implementations on Linux are the best known exam-
prior to calling memcpy() —say, the instruction that ples: to copy a source to a destination string, they access
pushesist on the stack. Also suppose timag¢mcpy() it- both by the same pointer—adding ttistancebetween
selfisinstrumented, so the load of tdst pointerintoa them to access the remote string.
register obtains the color of that pointer. However, since Our current solution is straightforward. Whé&in-
the original push was not instrument&InArmornever Armordetects a pointer subtraction, and later spots when
set that color! If we are lucky, we simply find no color, the resultant distance is added to the subtrahend to ac-
and everything works fine. If we are unlucky, we pick cess the buffer associated with the minuend pointer, it
up a stale color of whatever was previously on the stackesets the color to reflect the remote buffer, and we pro-
at that positioA. As soon asnemcpy() dereferences the tect dereferences in the usual way.
pointer, the color check fails and the program crashes. If more complex implementations of this phenomenon
BinArmorremoves all false positives of this nature by appear, we can prevent the associated dereferences from
adding an additional tag to the colors to indicate to whichbeing checked at all. To reach the remote buffer, such
memory address the color corresponds. The tag funcscenarios have an operation which involves adding a
tions not unlike a tag in a hardware cache entry: to checkalue derived from the distance between two pointers.
whether the value we find really corresponds to the adBinArmorwould not include it in the set of instructions
dress we look for. For instance,géx points todst , the to be instrumented, so that the tag of the resultant pointer
tag contains the addredst . If the program copiesax will not match its value, and the color check will not be
to ebx, it also copies the color and the tag. When theperformed. False positives are ruled out.
program manipulates the register (egax++), the tag Other projects, like WIT [3] and the pointer analysis-
incurs the same manipulation (e.g., fag-+). Finally, based protection in [5], explicitly assume that a pointer
when the program dereferences the pointer, we checto an object can only be derived from a pointer to the
whether the color corresponds to the memory to whichsame object. In this sense, our approach is more generic.
the pointer refers. SpecificallginArmorchecks the col-
ors on a dereference ebx, iff (tag..,==eax). Thus, it
ignores stale colors and prevents the false positives. 5.3 Expectthe Unexpected Paths
To justify that BinArmor effectively rules out false
positives, we have to show that all program paths exe-
cuted at runtime do not exhibit any false alerts. As we
discussed in Section 4, a program path at runtime,

2There may be stale colors for the stack value, because it is not"@y differ from_ all paths seen during analysis, while
practical to clean up all colors whenever memory is no longesi sharing parts with (some of) them. Thuys; may ac-

Pointer Subtraction: What if Code is Color Blind?
The colors assigned BinArmor prevent a binary from

cess an array, while some of the instructions associatemhdividual fields in a structure. First, we sketch how we
with these accesses are not instrumented. The questi@ssign the colors. Next, we explain how they are used.
is whethemp g may cause false positives. SinceBinArmorknows the structure of an object to be
Supposepr accesses an array. dfr is a pointer to protected, it can assign separate colors to each variable
this array, 3 generic types of instruction might be missedand to each field. The colors are hierarchical, much like
and thus not instrumented BinArmor. (1) anarr ini- real colors: lime green is a shade of green, and dark lime
tialization instruction, (2) ararr update/manipulation green and light lime green, are gradations of lime green,
instruction, and (3) aarr dereference instruction. etc. Thus, we identify a byte's color as a sequence of
The crucial feature oBinArmor which prevents false shadesC : C; : .. : Civ, where we interpre’; | ; as a
positives in cases (1) and (2) are the tags introduced ishade of coloC;. Each shade corresponds to a nesting
Section 5.2. They check whether the color associatedevel in the data structure. This is illustrated in Fig. {2.d
with a pointer corresponds to the right value. In the case The base color(;, corresponds to the complete ob-
of a pointer initialization or a pointer update instruction ject, and is just like the color used BinArmorin BA-
missing, the pointer tag does not match its value anyobjects mode. It distinguishes between individually al-
more, its color is considered invalid, and it is not checkedlocated objects. At level 1, the object in Fig. (2.d) has
on dereferences. Finally, if aarr dereference instruc- three fields, each of which gets a unique shage The
tion is not instrumented, it only means that the colortwo integer fields do not have any further nesting, but the
check is not performed. Again, it can only result in false array field has two more levels: array elements and fields
negatives, but never false positives. within the array elements. Again, we assign a unique
shade to each array element and, within each array ele-
. ment, to each field. The only exceptions are the base of
6 BA-fields mode a Colorful Armor the array and the base of the structs—they remain blank

: . : S for reasons we explain shortly. Finally, each color
BA-objects mode and BA-fields mode differ significantly has a type flag indicating whether it is an array element

in the granularity of protection. Whgre BA—obj'ects mode g5 in the figure as a dot (a small circle on the right).
protect'_s memory at the Iev_el of objects, BA'f'eld_S mode We continue the coloring process, until we reach the
offers fmer-gramed_protecn(_)n—at_the level of fields in maximum nesting level (in the figure, this happens at
strugtures. T.hus, BinArmor in BA-fields mode stops notc3), or exhaust the maximum color depta In the lat-
on!y inter-object buffer overflow attacks, but also intra- ter case, the object has more levels of nesting ian

€rmor can accommodate in shades, so that some of the
levels will collapse into one, ‘flattening’ the substrueur
Collapsed structures reduBgnArmors granularity, but
6.1 Whatis Permissible? What is not? do not cause problems otherwise. In fact, most existing
Consider the structure in Fig. (2.a) with a memory lay-Solutions (like WIT [3] and BBC [4]) operate only at the
out as shown in Fig. (2.d). Just like in BA-objects mode, 9ranularity of the full object.
BinArmor now also permits legitimate memory accesses
such as the two tick-marked accesses in Fig. (2.d). Protection by Color Matching The main difference
But unlike in BA-objects modeBinArmor in BA- between the color schemes implemented in BA-objects
fields mode stops the program from accessing thenode and BA-fields mode is that colors are more com-
privilieged field via a pointer into the array. Similarly, plex now and include multiple shades. We need a new
it prevents accessing thdield in one array element from procedure to compare them, and decide what is legal.
they field in another. Such accesses that do not normally The description of the procedure starts in exactly the
occur in programs are often symptomatic of attdcks same way as in BA-objects mode. When a buffer of color
X is assigned to a pointeBinArmor associates the same
6.2 Shaded Colors color with the register containirjg the point_er. Thg color
does not change when the pointer value is manipulated
BinArmoruses ashadedcolor scheme to enforce fine- (e.g., when the program adds an offset to the pointer), but
grained protection. Compared to BA-objects mode, thet js copied when the pointer is copied to a new register.
color scheme used here is much richer. In Section 5, thgynhen the program stores a pointer to memory, we also
whole object was given a single color, but in BA-fields store its color to a memory map, to load it later when the
mode, we add shades of colors to distinguish betweerigoimer is restored to a register.

3Note: if theydooccur, eitheHoward classifies the data structures The difference from the BA_ObJeCtS mode is in the

differently, or BinArmor detects these accesses in the analysis phase_?Olor update rUIe:_ when the program dereferences a reg-
and appliesnaskgSection 6.2), so they do not cause problems. ister, we update its color so that it now corresponds to

the chances of false positives which should be curbed.

the memory location associated with the register. Theside the structure of Fig. (2.b): an initialization of the
intuition is that we do not update colors on intermediatearray should not overwrite th@ivileged field.
pointer arithmetic operations, but that the colors repre- One (bad) way to handle such color blindness is to
sent pointers used by the program to access memory. white-list the code. For instance, we could ignore all
From now onBinArmor vets each dereference of the accesses from white-listed functions. While this helps
pointer to see if itis stillin bounds. Vetting pointer deref against some false alerts, it is not a good solution for two
erences is a matter of checking whether the color of theeasons. First, it does not scale; it helps only against a
pointer matches that of the memory it points to—in all few well-known functions (e.g., libc functions), but not
the shades, from left to right. Blank shades serve as wildigainst applications that use custom functions to achieve
cards and match any color. Thus, leaving bases of strud¢he same. Second, as it ignores these functions alto-
tures and arrays blank guarantees that a pointer to theigether, it would miss attacks that use this code. For in-
can access all internal fields of the object. stance, the initialization of (just) the buffer could over-
Finally, we handle the common case where a pointeflow into the privilege field.
to an array element derives from a pointer to another ele- Instead,BinArmor exploits the shaded colors of Sec-
ment of the array. Since array elements in Fig. (2c) differtion 6.2 to implemenmasks Masks shield code that is
in C5, such accesses would normally not be allowed, butolor blind from some of the structure’s subtler shades.
the dots distinguish array elements from structure fieldsFor instance, when the initialization code in Fig. (2.b) is
Thus we are able to grant these accesses. We now illugpplied to the array, we filter out all shades beyadhd
trate these mechanisms for our earlier examples. the code is then free to write over all the records in the
Suppose the program has already accessed the first array, but cannot write beyond the array. Similarly, if an
ray element by means of a pointer to the base of the arraipitialization routine writes over the entire object, we fil
at offset 4 in the object. In that case, the pointer’s ini-ter all shades exceft,, limiting all writes to this object.
tial color is set toC'; of the array’s base. Next, the pro- Fig. (2.e) illustrates the usage of masks. The code on
gram addsizeof(pair) to the array’s base pointer the left initializes the array in the structure of Fig. 2. By
and dereferences the result to access the second array atasking all colors beyond’, and C;, all normal ini-
ement. At that pointBinArmor checks whether the col- tialization code is permitted. If attackers can somehow
ors match.Cy clearly matches, and since the pointer hasmanipulate theen variable, they could try to overflow
only theC color of the first array element, its color and the buffer and change thgivileged value. However,
that of the second array element match. Our second exn that case th&”; colors do not match, anBinArmor
ample, accessing thefield from the base of the array, will abort the program.
matches for the same reason. To determine whether a memory access needs masks
However, an attacker cannot use this base pointer t¢and if so, what sort)BinArmors dynamic analysis first
access therivileged field, because thé’; colors do marks all instructions that trample over multiple data
not match. Similarly, going from thefield in the second structures as ‘color blind’ and determines the appropriate
array element to the field in the third element will fail, mask. For instance, if an instruction accesses the base of
because thé€’; shades differ. the objectBinArmor sets the masks to block out all col-
ors excepy. If an instruction accesses a field at tAe k
The Use of Masks: What if Code is Color Blind? level in the structureBinArmor sets the masks to block

Programs do not always access data structures in a W:R/Ut gll golors e>.<cepCO...Ck - And so on.)

that reflects the structure. They frequently use functions Finding the right masks to apply and the right places to
similar tomemset to initialize (or copy) an entire object, 0 SO, requires fairly subtle analysBinArmorneeds to
with all subfields and arrays in it. Unfortunately, these decideat runtimewhich part of the shaded color to mask.
functions do not heed the structure at all. Rather, they" e above example, if the program initializes the whole

trample over the entire data structure in, say, word-sizetructure BinArmor sets the masks to block out all col-
strides. Here is an example. Supppse a pointertoan °'S excepl. If the same function is called to initialize

integer and we have a custonemset-like function: the array, however, onlg’; andC'; are shielded. To do
s0,BinArmors dynamic analysis tracks tls@urceof the
for (p=objptr, p<sizeof(*objptr); p++) *p = 0; pointer used in the ‘color blind’ instruction, i.e., the bas

of the structure or array. The instrumentation then allows
The code is clearly ‘color blind’, but while it violates for accesses to all fields included in the structure (or sub-
the color protectionBinArmor should not raise an alert structure) rooted at this source. Observe that not all such
as the accesses are all legitimate. But it should not ignor@structions need masks. For instance, code that zeros all
color blindness either. For instance, the initializatidn o words in the object by adding increasing offsets to the
one object should not trample owvetherobjects. Or in- baseof the object, has no need for masks. After all, be-

cause of the blank shades the base of the object permi|;1} voig ltﬁna}{;is l(l(l;ats;: P
. . . i A a) call foo((int™)array_of structs, 5
access to the entire object even without masks. 3] O Mg 0089 T ™ the call stack gets accepted
BinArmor enforces the masks when rewriting the bi- |12] retum;) tion o U8 i instrumentod
nary. Rather than checking all shades, it checks only th {% 4 ﬁiTeSt&TnﬁnﬁmSEt yet without the need for a mask
instructions'visible colors for these instructions. [8] *buf =0; 2. Production run:
19] buf++; call foo((int*)array_of structs, 2408);
H(:H }} - the call stack is accepted, so BA runs
X) X)) the instrumented version of the function
Pointer Subtraction As discussed in Section 5.2, - crash in [8] because we don't expect
some functions exhibit color blindness, and use a pointe| the need for a mask

to one object to access another. Both the problem and its
solution are exactly the same as for BA-fields mode. Fig. 3: BA-fields mode: a scenario leading to false positives.

6.3 Why We do Not See False Positives 6.4 Are False Positives Still Possible?

_Given an accurate or conservative estimate of array \wpjle the extra mechanism to prevent false positives
sizes, the only potential cause of false positives is lack)aseq on context checks is effective in practice, it does
of coverage. As explained in Section 5, we do not ad+,q; give any strong guarantees. The problem is that a
dress the array size underestimation here-we simply rs| stack does not identify the execution context with
quire either symbol tables or a conservative data structurgp o ute precision. Fig. 3 shows a possible problematic

extractor (Section 3). But other coverage issues 0ccur réseanario. In this case, it should not be the call stack, but a
gardless of symbol table availability and must be curbed,qqe in the program control flow graph which identifies

the context. Only if we saw the loop in lines [6-9] initial-

Stale Colors and Tags In Section 5.2, we showed that izing thearray _of structs , should we allow for an
lack of coverage could lead to the use of stale colors iinstrumented version of it at runtime. Observe that the
BA-objects mode. Again, the problem and its solutionscenario is fairly improbable. First, the offensive func-
are the same as for BA-fields mode. tion must exhibit the need for masks, that is, it must ac-
cess subsequent memory locations through a pointer to a
previous field. Second, it needs to be called twice with

Missed Masks and Con_text Checks_ Limited code very particular sets of arguments before it can lead to the
coverage may also cauBénArmorto miss theneedfor awkward situation

masks an.d, unless prevented, lead to falselpositives. Con- As we did not encounter false positivesany of our
sider again the example custanemset function of Sec-
tion 6.2. The code is color blind, unaware of the under-
lying data structure, and accesses the memory accordi
to its own pattern. To prevent false positives, we intro-
ducedmaskshat filter out some shades to allow for be- o)
nign memory accesses. 7 Efficient Implementation

Suppose that during analysis the custaamset func- P ion b | hi bined with ks f
tion is invoked only once, to initialize an array of 4-byte rotection by color matching combined with masks for

fields. No masks are necessary. Later, in a productior‘fOlor blindngss allowﬁinArmorto prot(_ect data struc-
run, the program takes a previously unknown code Ioathtures at a finer granularity than previous approaches.

and uses the same function to access an array of 16-by; ve? sol,cf_the mecr}amsms are ggﬁ'&mently zlmple tg al-
structures. Since it did not assign masks to this functio owtore 'C'Qr};z'”t‘)? eET'(:ertl)t_atlo.n ;n rkr]no[}s 382396%'
originally, BinArmor now raises a (false) alarm. toinstrument 32-bit Inaries forthe LInux/x86 plat-

To prevent the flse larm, we keep two versions of "% LKE Pe0l (24t perorns state etnumertay
each function in a program: a vanilla one, and an instru—ecu,’[ablé’ and qenerates a new binary with permanent
mented one which performs color checking. When the ' 9 Y P

program calls a functiorBinArmor checks whether the modifications. We first describe hdBinArmor modifies

function call also occurred at the same point during thethe layout of a binary, and next present some details of

analysis by examining the call stack. (In practice, Wethelnstrumentatlon. (For a full explanation refer to [32].

take the top 3 function calls.) Then, it decides whether .
or not to execute the instrumented version of the func/-1 Updated Layout of ELF Binary

tion. It performs color checking only for layouts of data To accommodate new code and data required by the
structures wénave seen beforeso we do not encounter instrumentation,BinArmor modifies the layout of an

code that accesses memory in an unexpected way. ELF binary. The original data segment stays unaltered,

experiments, and BA-fields mode offers powerful, fine-
rained protection, we think that the risk may be accept-
le in application domains that can handle rare crashes.

yvhile we modify the text segment onlyina m.inor WAY— | dereterence _check_start:
just to allow for the selection of the appropriate version | # check whether tag value matches the pointer

cmp %edx, register_ tag_edx

of a function (Section 6.3), and to assure that the result-| sne dereference check end
ing code works correctly—mainly by adjusting jump tar- | [save feax and febx used in instrumentation]

lea (%edx, %eax, 4), %ebx

gets to reflect addresses in the updated code (refer to Sed caii get_color ot ebx ; loaded to sbx

. . . A . v regi r lor X, %ax

tion 7.2). To provide protectioBinArmorinserts a few - iiliﬁfmgiiht’;iimpari colors in Sax and sba
additional segments in the binary: Blitialized Data, Gy Taeed o GRS S

je _dereference_ok

BA _Uninitialized Data, BA Procedures, and BEode.
Both data segmentBA (Un)lnitialized Data— store
data structures that are internally used BiyArmor, ereference ok,
e.g., data structures color maps, or arrays mapping ad- restore $eax and sebx used in instrumentation]
dresses in the new version of a binary to the original | @ @ @
ones. TheBA Procedurescode segment contains var- | movi sox1234, (sedx, %eax, 4); execute original instr
ious chunks of machine code used by instrumentation
shippets (e.g., a procedure that compares the color of ig. 4: |nstrumentation for an array pointer dereference
pointer with the color of a memory location). Finally, the (with 16b colors and tags). The original instructionnigv
BA_Codesegment is the pivot of tH&inArmorprotection 0x1234,(%edx,%eax,4) . We replace it by code similar
mechanism—it contains the original program’s functionsto that presented in the figure (but more efficient).
instrumented to perform color checking.

_dereference bad:
["crash"]

the instructions. Our solution to indirect jumps is simi-
lar to [31]: they are resolved at runtime, by using arrays
To harden the binary, we rewrite it to add instrumenta-maintaining a mapping between old and new addresses.
tion to those instructions that dereference the array point
ers. In BA-fields mode, we use multi-shade colors only
if the data structures are nested. When we can tell that lserting instrumentation. Snippets come in many
variable is a string, or some other non-nested array, wehapes. For instance, snippets to handle pointer deref-
switch to a simpler, single-level color check. erences, to handle pointer move instructions, or to color
To provide protectionBinArmor reorganizes code at memory returned bynalloc . Some instructions require
the instruction level. We do not need to know function that a snippet performs more than one action. For exam-
boundaries, as we instrument instructions which wereple, an instruction which stores a pointer into an array,
classified as array accesses, along with pointer moveeeds to both store the color of the pointer in a color
or pointer initialization instructions, during the dynami map, and make sure that the store operation is legal. For
analysis phase. We briefly describe the main steps take@n efficient instrumentation, we have developed a large
by BinArmor. (1) inserting trampolines and method se- humber of carefully tailored snippets.
lector, (2) code relocation, (3) inserting instrumentatio Colors map naturally on a sequence of small numbers.
For instance, each byte in a 32-bit or 64-bit word may
represent a shade, for a maximum nesting level of 4 or 8,
respectively. Doing so naively, incurs a substantial over-
(gead in memory space, but, just like in paging, we need
. .) . nly allocate memory for color tags when needed. The
gotpar%sz)‘liﬁggtt&intjgg?r?ntigg;t;)fleﬂégﬁrgsgavéﬁcgl?;ze- same memory optimization is_often usedin d_ynamic_: taint
analysis. In the implementation evaluated in Section 8,

_tected) function in the original text segm_ent, Wh'ph ¥ve use 32 bit colors with four shades and 16 bit tags.
jumps to the method selector. The selector picks the right _
Fig. 4 shows an example of an array dereference in

code to continue execution, as discussed previously. the binary hardened bBinArmor. The code is simpli-

fied for brevity, but otherwise correct. We see that each
Code relocation. BinArmors instrumentation frame- array dereference incurs some extra instructions. If the
work must be able to add an arbitrary amount of extracolors do not match, the system crashes. Otherwise, the
code between any two instructions. In turn, targets ofdereference executes as intended. We stress that the real
all jump andcall instructions in a binary need to be implementation is more efficient. For instance, adding
adjusted to reflect new values of the corresponding adtwo call instructions would be extremely expensive. In
dresses. As far as direct/relative jumps are concernedeality, BinArmor uses code snippets tailored to perfor-
we simply calculate new target addresses, and modifynance

7.2 Instrumentation Code

Inserting trampolines and method selector. The role
of a method selectors to decide whether a vanilla or
an instrumented function should be executed (see Se

8 Evaluation 3

mmm— Native C—— BinArmor

We evaluateBinArmoron performance and on effective- £
ness in stopping attacks. As the analysis engine is baseg
on the Qemu processor emulation, which is currently ”
only available on Linux, all examples are Linux-based. o oE

. . . 1K 10K 100K 1M 10M gzip gzip gzip htget wget
However, the approach is not specific to any operating lightipd (16M) (6.8M) (67M) (any size)
system.

We have performed our analysis for binaries compiled
with two compiler versiongycc-3.4 andgce-4.4 , and
with different optimization levels. All results presented
in this section are for binaries compiled wiglac-4.4

Fig. 5: Performance overhead for real world applications:
lighttpd — for 5 object sizes (in connections/s as measured by
httperf), gzip— for 3 object sizeshtgetandwget

6
-02 and without symbols, i.e., completely stripped. We 5| === Natve &= BinAmor i
reconstruct the symbols usihtpward [29]. £ 4 = = .
g3 7
g, [i

1

0

Performance To evaluate the performance din- AU U W SO B R O OO U O S
Armor Operating in BA_erIdS mOdJe we Compare the _.L_—r!gm%man idea assign fourier bitfield string integer
speed of instrumented (armored) binaries with that of decomp net sort sort
u,and'f'ed Implementatlons. Our test platform is 8Fig. 6: Performance overhead for the compute-intensive
Linux 2.6 system with an Intel(R) Core(TM)2 Duo CPU penchbenchmark suite.
clocked at 2.4GHz with 3072KB L2 cache. The system
has 4GB of memory. For our experiments we used an
Ubuntu 10.10 install. We ran each test multiple timesnbenchtest suite. The overall slowdown for nbench is
and present the median. Across all experiments, the 90tB.9x. Since this benchmark suite was chosen as worst-
percentiles were typically within 10% and never more case scenario and we have not yet fully optimiBia-
than 20% off the mean. Armor, these results are quite good. Some of the tests
We evaluate the performance BinArmor with a va- incurred a fairly minimal slow-down. Presumably, these
riety of applications—all of the well-knownbenchin- benchmarks are dominated by operations other than ar-
teger benchmarks [1]—and a range of real-world pro-fay accesses. String sort and integer sort, on the other
grams. We picked thebenchbenchmark suite, because hand, manipulate strings and arrays constantly and thus
it is compute-intensive and several of the tests shouldncur much higher slowdowns. They really represent the
represent close to worst-case scenario8faArmor. worst cases foBinArmor.
For the real-world applications, we chose a variety of

very different programs: a network servéglfttod), Effectiveness Table 1 shows the effectiveness Bih-
several network clientswget, htget), and a more Armor in detecting attacks on a range of real-life soft-
compute-intensive taskggip). Lighttod is @ high- ware vulnerabilities. Specifically, these attacks represe
performance web server used by such popular sites ag| vulnerabilities on Linux programs for which we found
YouTube, SourceForge, Wikimedia, Meebo, and ThePyorking exploits.BinArmoroperating in either mode de-
irateBay. Wget andhtget are well-known command- tected all attacks we tried and did not generate any false
line web clients.Gzip implements the DEFLATE algo- positives during any of our experiments. The attacks de-
rithm which includes many array and integer operationstected vary in nature and include overflows on both heap
Fig. 5 shows that for real I/O-intensive client-side ap- and stack, local and remote, and of both control and non-
plications likewget andhtget the slowdown is negli- control data.
gible, whilegzip incurs a slow-down of approximately The detection of attacks on non-control data is espe-
1.7x. Asgzip is a very expensive test f@inArmor, cjally encouraging. While control flow diversions would
the slow-down was less than we expected. The overyigger alerts also on taint analysis systems like Ar-
head for a production-grade web server liigattpd gos [25] and Minemu [8], to the best of our knowledge,
is also low: less than 2.8x for all object sizes, and as lit-ng other security measure for stripped binaries would
tle as 16% for large objects. In networking applicationspe aple to detect such attacks. As mentioned earlier,
/O dominates the performance and the overhedif security experts expect non-control data attacks to be-

Armoris less important. . ~come even more important attack vectors in the near fu-
Fig. 6 shows the results for the very compute-intensiveyyre [12, 30].

4The reason is that BA-fields mode is the most fine-grained, al-
though in practice, the performance of BA-objects mode is sinylar.

10

Application

Vulnerability type

Security advisory

Aeon 0.2a
Aspell 0.50.5
Htget 0.93 (1)
Htget 0.93 (2)
Iwconfig v.26
Ncompress 4.2.4
Proftpd 1.3.3a
bc-1.06 (1)
bc-1.06 (2)

Exim 4.41
Nullhttpd-0.5.1
Squid-2.3

Stack overflow
Stack overflow
Stack overflow
Stack overflow
Stack overflow
Stack overflow
Stack overflow
Heap overflow
Heap overflow
Heap overfloiv
Heap overflolv
Heap overfloiv

CVE-2005-1019
CVE-2004-0548
CVE-2004-0852

CVE-2003-0947

CVE-2001-1413

CVE-2010-4221
Bugbench [22]
Bugbench [22]

CVE-2010-4344
CVE-2002-1496
Bugbench [22]

precision is worse.) To deal with these problems, WIT
additionally inserts small guards between objects, which
cannot be written by any instruction. They provide an
extra protection against sequential buffer overfloRig.-
Armortracks colors of objects dynamically, so each array
is assigned a unique color.

Also, WIT and BBC protect at the granularity of mem-
ory allocations. If a program allocates a structure that
contains an array as well as other fields, overflows within
the structure go unnoticed. As a result, the attack surface
for memory attacks is still huge. SoftBound is one of the
first tools to protect subfields in C structures [23]. Again,
SoftBound requires access to source code.

* A non-control-diverting attack.! A reproduced attack. BinArmors protection resembles that of WIT, but

without requiring source code, debugging information,
or even symbol tables. Unlike WIT, it protects at the
granularity of subfields in Gtruct s. It prevents not
just out-of-bounds writes, as WIT does, but also reads.
As a drawbackBinArmor may be less accurate, since

) .) dynamic analysis may not cover the entire program.
The easiest way to prevent memory corruptions is to do

so at the source level, using a safe language or Comp”%rotection of binaries Arguably some of the most
extension. However, as access to source code or recom- . .
lation is oft i i binari left _popular measures to protect against memory corruption
protected. Our work is about protecting binaries. Since ite Memery debuggers like Purify and Valgrind [24),
protected. pr g b L LI'hese powerful testing tools are capable of finding many
was inspired by the WIT compiler extension, we briefly memory errors without source code. However, they incur

look at compile time solutions also. overheads of an order of magnitude or more. Moreover,
their accuracy depends largely on the presence of debug
Protection at compile time Managed languages like information and symbol tables. In contraBinArmoris
Java and C# are safe from buffer overflows by designmuch faster and requires neither.
Cyclone [20] and CCured [14] show that similar pro- One of the most advanced approaches to binary pro-
tection also fits dialects of C—although the overhead istection is XFI [19]. Like memory debuggers, XFI re-
not always negligible. Better still, data flow integrity quires symbol tables. Unlike memory debuggers, DTA,
(DFI) [10], write integrity testing (WIT) [3], and baggy or BinArmor, XFI's main purpose is to protect host soft-
bounds checking (BBC) [4] are powerful protection ap- ware that loads modules (drivers in the kernel, OS pro-
proaches against memory corruptions for unmodified C.cesses, or browser modules) and it requires explicit sup-
BinArmor was inspired by the WIT compiler portfrom the hosting software—to grant the modules ac-
extension—a defense framework that marries immedicess to a slice of the address space. It offers protection
ate (fail-stop) detection of memory corruption to excel- by a combination of control flow integrity, stack split-
lent performance. WIT assigns a color to each objecting, and memory access guards. Memory protection is
in memory and to each write instruction in the program,at the granularity of the module, and for some instruc-
so that the color of memory always matches the colottions, the function frame. The memory guards will miss
of an instruction writing it. Thus all buffers which can most overflows that modify non-control data.
be potentially accessed by the same instruction share the An important class of approaches to detecteffects
same color. WIT employs points-to analysis to find theof memory corruption attacks is based on dynamic taint
set of objects written by each instruction. If several ob-analysis (DTA) [15]. DTA does not detect the memory
jects share the same color, WIT might fail to detect at-corruption itself, but may detect malicious control flow
tacks that use a pointer to one object to write to the othertransfers. Unfortunately, the control flow transfer occurs
To get a grasp of the precision, we implemented pointsat a (often much) later stage. With typical slowdowns of
to analysis ourselves, and applied it to global arrays imran order of magnitude, DTA in software is also simply
gzip-1.4 . Out of 270 buffers, 124 have a unique color, too expensivéor production systems.
and there are two big sets of objects that need to share it: Non-control data attacks are much harder to stop [12].
containing 64 and 68 elements. (We assume that we prd41] pioneered an interesting form of DTA to detect some
vide templates for théibc functions. Otherwise, the of these attacks: pointers become tainted if their values

Table 1: Tested vulnerabilitiesall attacks were stopped by
BinArmor, including the attack on non-control data.

9 Related Work

11

are influenced by user input, and an alert is raised if &he quality of software.
tainted value is dereferenced. However, pointer taint-

edness for detecting non-control data attacks is show

to be impractical for complex architectures like the x86ril Future work

and popular operating systems [28]. The problems raNggin Armors two main problems are accuracy (in terms of
from handling table lookups to implicit flows and result

i fal itiv nd neqativ Moreover. by defini false negatives and false positives) and performance (in
alse positives a egatives. Moreover, by de 't(tarms of the slowdown of the rewritten binary). In this

tion, pointer tamt_edness_cannot detect attacks that do n%dection, we discuss ways to address these problems.
dereference atainted pointer, such as an attack that would _. . .
First, the root cause d@inArmors false negative and

overwrite theprivileged field in Fig. (2a). false positive problems is the lack of code coverage. Our
next target, therefore, is to extend the paths covered dy-
10 Discussion namically by means of static analysis. For instance, we
can statically analyze the full control flow graphs of all
Obviously,BinArmoris not flawless. In this section, we functions called at runtime. Static analysis in general is
discuss some generic limitations. quite hard, due to indirect calls and jumps, but within a
With a dynamic approactBinArmor protects only ar- single function indirect jumps are often tractable (they
rays detected by Howard. If the attackers overflow othefare typically the result cwitch ~ statements that are rel-
arrays, we will miss the attacks. Also, if particular ar- atively easy to handle).
ray accesses are not exercised in the analysis phase, theSecond, the cause 8inArmors slowdown is the in-
corresponding instructions are not instrumented eithefstrumentation that adds overhead to every access to an
Combined with the tags (Section 5.2), this lack of accu-array thatBinArmor discovered. We can decrease the
racy can only cause false negatives, but never false pospverhead using techniques that are similar to those ap-
tives. In practice, as we have seen in SectidBiBArmor plied in WIT. For instance, there is no need to perform
was able to protect all vulnerable programs we tried. checks on instructions which calculate the address to be
Howard itself is designed to err on the safe side.dereferenced in a deterministic way, say at offset 0x10
In case of doubt, it overestimates the size of an arrayfrom a base pointer_ Thus, our next step is to ana|yze the
Again, this can lead to false negatives, but not false posinstructions that are candidates for instrumentation and
itives. However, if the code is strongly obfuscated or de-determine whether the instrumentation is strictly needed.
liberately designed to confuse Howard, we do not guar-
antee that it will never misclassify a data structure in)
such a way that it will cause a false positive. Still, it 12 Conclusions

is unlikely, because to do so, the behavior during analy- . .
sis should also be significantly different from that during We described a novel approach to harden binary software

the production run. In our view, the risk is acceptable forproactively against butier overflows, without access to
software deployments that can’ tolerate rare crashes. Source or symbol tables. Besides attacks that divert the

We have implemented two versionsRihArmor. BA- go?tro::ﬂotvr\:, we alzo detectt atttzctlﬁls ta gainst non—crc]) nttrol
objects mode, and BA-fields mode. While the latter pro- ata. urther, we demonstrated that our approach stops

tects memory at a fine-grained granularity, there exisf Vanety of real exploits. Finally, as long as we are con-

theoretical situations that can lead to false alerts. How>€"Vatve in classifying data structures in the binaries,

ever, in practice we did not encounter any problems_our method will not have false positives. On the down-

Since the protection offered is very attractive Bin- side, the overhead of our approach in its current form is
Armor protects individual fields within structures — we quite h|gh—mak|ng it unsuitable for many apphcalmtlo'n.
again think that the risk is acceptable domains today. However, we also showed that signifi-

Code coverage is a limitation of all dynamic analy- f:ant pe_rformance opti_mizations may still be_ p.OSSible' It
sis techniques and we do not claim any contribution to> Our view th?t protection at the binary level is mpo_rtant
this field. Interestingly, code coverage can also be ‘toofor (_jeahng with real threats to real and deployed infor-
good'. For instance, if we were to trigger a buffer over- mation systems.

flow during the analysis rufBinArmorwould interpret it

as normal code behavior and not prevent similar overrung\cknowledgements

during production. Since coverage techniques to handle

complex applications are currently still fledgling, this is This work is supported by the European Research Coun-
mostly an academic problem. At any rate, if binary codecil through project ERC-2010-StG 259108-ROSETTA
coverage techniques are so good as to find such real probnd the EU FP7 SysSec Network of Excellence. The au-

lems in the testing phase, this can only be beneficial fothors are grateful to David Brumley and his team for pro-

12

viding us with several local exploits, and to Erik Bosman [20]
and Philip Homburg for their work on the Exim exploit.

[21]

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

nbench benchmark.
~ mayer/linux/bmark.html

BYTE Magazine
http:/iwww.tux.org/

[22]

ABADI, M., BuDIU, M., ERLINGSSON U., AND LIGATTI, J.
Control-Flow Integrity. InProceedings of CC&005).

AKRITIDIS, P., CADAR, C., Raiciu, C., COoSTA, M., AND (23]

CASTRO, M. Preventing memory error exploits with WIT. In
Proc. of the IEEE Symposium on Security and Priv&&P’08.

AKRITIDIS, P., GSTA, M., CASTRO, M., AND HAND, [24]

S. Baggy Bounds Checking: An efficient and backwards-
compatible defense against out-of-bounds error®raceedings
of the 18th Usenix Security Symposi(@009), USENIX-SS'09.

AvOTS, D., DALTON, M., LIVSHITS, V. B., AND LAM, M. S.
Improving software security with a C pointer analysis. Froc.
of the 27th Intern. Conf. on Software Engineering (IC&8)05).

(25]

(26]

BELLARD, F. QEMU, a fast and portable dynamic translator. In
USENIX 2005 Annual Technical Conferenf@EC '05.

27
BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address [27]
obfuscation: an efficient approach to combat a board range of
memory error exploits. liProc. of USENIX-S£003). 28]

BosmAN, E., S OWINSKA, A., AND Bos, H. Minemu: The
Worlds Fastest Taint Tracker. Rroceedings of 14th Interna-

tional Symposium on Recent Advances in Intrusion Detection29]
(2011), RAID 2011.

CADAR, C., DUNBAR, D.,AND ENGLER, D. KLEE: Unassisted
and automatic generation of high-coverage tests for compkex
tems programs. IRroc. of OSDI(2008).

s [30]

CASTRO, M., COSTA, M., AND HARRIS, T. Securing software

by enforcing data-flow integrity. IRroc. of OSDI(2006). [31]

CHEN, S., XU, J., NaKKA, N., KALBARCZYK, Z., AND |YER,
R. K. Defeating memory corruption attacks via pointer tainted

ness detection. IRroc. of DSN(2005). [32]

CHEN, S., Xu, J., EZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data attacks are realistic threatsPioc. of
14th USENIX Security Symposi#005), SSYM'05.

CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
platform for in vivo multi-path analysis of software systents.
Proc. of ASPLO%2011).

CoNDIT, J., HARREN, M., MCPEAK, S., NECULA, G. C.,AND
WEIMER, W. CCured in the real world. IRroc. of POPL(2003).

CosTA, M., CROWCROFT J., CASTRO, M., ROWSTRON A.,
ZHOou, L., ZHANG, L., AND BARHAM, P. Vigilante: end-to-end
containment of internet worms. Proc. of SOSK2005).

(33]

CowaNn, C., Ry, C., MAIER, D., HINTONY, H., WALPOLE, J.,
BAKKE, P., BEATTIE, S., QRIER, A., WAGLE, P.,AND ZHANG,
Q. StackGuard: Automatic Adaptive Detection and Preverdfon
Buffer-Overflow Attacks. IrProc. of USENIX-S$1998).

CWE/SANS. TOP 25 Most Dangerous Software Errors.
Wwww.sans.org/top25-software-errors , 2011.

ELIAS LEVY (ALEPH ONE). Smashing the stack for fun and
profit. Phrack 7 49 (1996).

ERLINGSSON U., VALLEY, S., ABADI, M., VRABLE, M.,
Bupiu, M., AND NECULA, G. C. XFI: software guards for
system address spaces.Aroc. of OSDI(2006).

13

JM, T., MORRISETT, G., GROSSMAN, D., Hicks, M., CH-
ENEY, J., AND WANG, Y. Cyclone: A safe dialect of C.
USENIX 2002 Annual Technical Conferené@EC '02.

LAURENZANO, M., TIKIR, M. M., CARRINGTON, L., AND
SNAVELY, A. PEBIL: Efficient static binary instrumentation for
Linux. In Proc. of ISPAS$2010).

Lu, S., U, Z., QN, F., TaN, L., ZHOU, P., AND ZHOU, Y.
Bugbench: Benchmarks for evaluating bug detection tools. In
Workshop on the Evaluation of Software Defect DetectiorsToo
(2005).

NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. SoftBound: highly compatible and complete
spatial memory safety for C. IRroc. of PLDI'09

In

NETHERCOTE N., AND SEWARD, J. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. Rroc. of
the 3rd Intern. Conf. on Virtual Execution Enviraf2007), VEE.

PORTOKALIDIS, G., SSLOWINSKA, A., AND Bos, H. Argos:

an Emulator for Fingerprinting Zero-Day Attacks. Rroceed-
ings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 200B006), EuroSys '06.

REPS T., AND BALAKRISHNAN, G. Improved memory-access
analysis for x87 executables. Rroc. of ETAPS2008).

SLOWINSKA, A., AND Bos, H. The Age of Data: Pinpointing
Guilty Bytes in Polymorphic Buffer Overflows on Heap or Stack.
In Proc. of ACSAG2007).

SLOWINSKA, A., AND Bos, H. Pointless tainting?: evaluating
the practicality of pointer tainting. IRroc. of EuroSy$2009).

SLOWINSKA, A., STANCESCU, T., AND Bos, H. Howard: a dy-
namic excavator for reverse engineering data structureBrdn
ceedings of NDS&011).

SoTIROV, A. Modern exploitation and memory pro-
tection bypasses. USENIX Security invited talk,
www.usenix.org/events/sec09/tech/slides/sotirov.pdf
August 2009.

SRIDHAR, S., $HAPIRO, J. S., AND NORTHUR, E. HDTrans: An
open source, low-level dynamic instrumentation systenfréae.
of the 2nd Intern. Conf. on Virtual Execution Envirg2006).

STANCESCU, T. BodyArmor: Adding Data Protection to Binary
Executables. Master’s thesis, VU Amsterdam, 2011.

TEAM, P. Design and implementation of PAGEEXEC.
http://pax.grsecurity.net/docs/pageexec.old.txt ,
November 2000.

http://www.tux.org/~mayer/linux/bmark.html
www.sans.org/top25-software-errors
www.usenix.org/events/sec09/tech/slides/sotirov.pdf
http://pax.grsecurity.net/docs/pageexec.old.txt

	Introduction
	Some buffer overflows are hard to stop: the Exim attack on non-control data
	What to Protect: Buffer Accesses
	Extracting Buffers and Data Structures
	Instructions to be Instrumented

	Code Coverage and Modes of Operation
	BA-objects mode: Object-level Protection
	What is Permissible? What is not?
	Protection by Color Matching
	Expect the Unexpected Paths

	BA-fields mode: a Colorful Armor
	What is Permissible? What is not?
	Shaded Colors
	Why We do Not See False Positives
	Are False Positives Still Possible?

	Efficient Implementation
	Updated Layout of ELF Binary
	Instrumentation Code

	Evaluation
	Related Work
	Discussion
	Future work
	Conclusions

